Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol Ther (Seoul) ; 30(1): 28-37, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34261819

RESUMO

Treatment options for patients with chronic kidney disease (CKD) are currently limited; therefore, there has been significant interest in applying mesenchymal stem/stromal cell (MSC)-based therapy to treat CKD. However, MSCs harvested from CKD patients tend to show diminished viability and proliferation due to sustained exposure to uremic toxins in the CKD environment, which limits their utility for cell therapy. The application of melatonin has been demonstrated to improve the therapeutic efficacy of MSCs derived from and engrafted to tissues in patients suffering from CKD, although the underlying biological mechanism has not been elucidated. In this study, we observed overexpression of hexokinase-2 (HK2) in serum samples of CKD patients and MSCs harvested from an adenine-fed CKD mouse model (CKD-mMSCs). HK2 upregulation led to increased production levels of methylglyoxal (MG), a toxic metabolic intermediate of abnormal glycolytic processes. The overabundance of HK2 and MG was associated with impaired mitochondrial function and low cell proliferation in CKD-mMSCs. Melatonin treatment inhibited the increases in HK2 and MG levels, and further improved mitochondrial function, glycolytic metabolism, and cell proliferation. Our findings suggest that identifying and characterizing metabolic regulators such as HK2 in CKD may improve the efficacy of MSCs for treating CKD and other kidney disorders.

2.
Biomolecules ; 11(10)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34680082

RESUMO

Atopic dermatitis (AD) is caused by multiple factors that trigger chronic skin inflammation, including a defective skin barrier, immune cell activation, and microbial exposure. Although melatonin has an excellent biosafety profile and a potential to treat AD, there is limited clinical evidence from controlled trials that support the use of melatonin as an AD treatment. The delivery of melatonin via the transdermal delivery system is also a challenge in designing melatonin-based AD treatments. In this study, we generated melatonin-loaded extracellular vesicle-mimetic nanoparticles (MelaNVs) to improve the transdermal delivery of melatonin and to evaluate their therapeutic potential in AD. The MelaNVs were spherical nanoparticles with an average size of 100 nm, which is the optimal size for the transdermal delivery of drugs. MelaNVs showed anti-inflammatory effects by suppressing the release of TNF-α and ß-hexosaminidase in LPS-treated RAW264.7 cells and compound 48/80-treated RBL-2H3 cells, respectively. MelaNVs showed a superior suppressive effect compared to an equivalent concentration of free melatonin. Treating a 2,4-dinitrofluorobenzene (DNCB)-induced AD-like mouse model with MelaNVs improved AD by suppressing local inflammation, mast cell infiltration, and fibrosis. In addition, MelaNVs effectively suppressed serum IgE levels and regulated serum IFN-γ and IL-4 levels. Taken together, these results suggest that MelaNVs are novel and efficient transdermal delivery systems of melatonin and that MelaNVs can be used as a treatment to improve AD.


Assuntos
Dermatite Atópica/tratamento farmacológico , Vesículas Extracelulares/química , Melatonina/farmacologia , Nanopartículas/química , Administração Tópica , Animais , Biomimética , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/patologia , Dinitroclorobenzeno/toxicidade , Células HEK293 , Humanos , Melatonina/química , Camundongos , Células RAW 264.7
3.
Front Mol Neurosci ; 14: 729273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658786

RESUMO

Astrocytes are the major glial cells in the brain, which play a supporting role in the energy and nutritional supply of neurons. They were initially regarded as passive space-filling cells, but the latest progress in the study of the development and function of astrocytes highlights their active roles in regulating synaptic transmission, formation, and plasticity. In the concept of "tripartite synapse," the bidirectional influence between astrocytes and neurons, in addition to their steady-state and supporting function, suggests that any negative changes in the structure or function of astrocytes will affect the activity of neurons, leading to neurodevelopmental disorders. The role of astrocytes in the pathophysiology of various neurological and psychiatric disorders caused by synaptic defects is increasingly appreciated. Understanding the roles of astrocytes in regulating synaptic development and the plasticity of neural circuits could help provide new treatments for these diseases.

4.
Front Aging Neurosci ; 13: 691230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349634

RESUMO

Neurodegenerative diseases are a class of slow-progressing terminal illnesses characterized by neuronal lesions, such as multiple sclerosis [MS, Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS)]. Their incidence increases with age, and the associated burden on families and society will become increasingly more prominent with aging of the general population. In recent years, there is growing studies have shown that lactosylceramide (LacCer) plays a crucial role in the progression of neurodegeneration, although these diseases have different pathogenic mechanisms and etiological characteristics. Based on latest research progress, this study expounds the pathogenic role of LacCer in driving central nervous system (CNS) inflammation, as well as the role of membrane microstructure domain (lipid rafts) and metabolite gangliosides, and discusses in detail their links with the pathogenesis of neurodegenerative diseases, with a view to providing new strategies and ideas for the study of pathological mechanisms and drug development for neurodegenerative diseases in the future.

5.
Cells ; 10(7)2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34359852

RESUMO

Dysregulation in mitophagy, in addition to contributing to imbalance in the mitochondrial dynamic, has been implicated in the development of renal fibrosis and progression of chronic kidney disease (CKD). However, the current understanding of the precise mechanisms behind the pathogenic loss of mitophagy remains unclear for developing cures for CKD. We found that miR-4516 is downregulated and its target SIAH3, an E3 ubiquitin protein ligase that reduces PINK1 accumulation to damaged mitochondria, is upregulated in the renal cortex of CKD mice. Here, we demonstrated that melatonin injection induces miR-4516 expression and suppresses SIAH3, and promotes PINK1/Parkin-mediated mitophagy. Furthermore, we demonstrated that melatonin injection attenuates the pathological features of CKD by improving mitochondrial homeostasis. Our data supports that mitochondrial autophagy regulation by activating miR-4516/SIAH3/PINK1 mitophagy signaling axis can be a viable new strategy for treating CKD.


Assuntos
Rim/patologia , Melatonina/farmacocinética , MicroRNAs/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Fibrose , Humanos , Rim/efeitos dos fármacos , Rim/fisiopatologia , Rim/ultraestrutura , Testes de Função Renal , Masculino , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Modelos Biológicos , Insuficiência Renal Crônica/patologia , Transdução de Sinais/efeitos dos fármacos
6.
Cancers (Basel) ; 13(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34298859

RESUMO

The authors wish to make the following corrections to this paper [...].

7.
Sci Adv ; 7(27)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34193412

RESUMO

The patterning of epithelial buds is determined by the underlying signaling network. Here, we study the cross-talk between phosphoinositide 3-kinase (PI3K) and Ras signaling during lacrimal gland budding morphogenesis. Our results show that PI3K is activated by both the p85-mediated insulin-like growth factor (IGF) and Ras-mediated fibroblast growth factor (FGF) signaling. On the other hand, PI3K also promotes extracellular signal-regulated kinase (ERK) signaling via a direct interaction with Ras. Both PI3K and ERK are upstream regulators of mammalian target of rapamycin (mTOR), and, together, they prevent expansion of epidermal growth factor (EGF) receptor expression from the lacrimal gland stalk to the bud region. We further show that this suppression of EGF signaling is necessary for induction of lacrimal gland buds. These results reveal that the interplay between PI3K, mitogen-activated protein kinase, and mTOR mediates the cross-talk among FGF, IGF, and EGF signaling in support of lacrimal gland development.

8.
Biomolecules ; 11(6)2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067472

RESUMO

A cellular prion protein (PrPC) is a ubiquitous cell surface glycoprotein, and its physiological functions have been receiving increased attention. Endogenous PrPC is present in various kidney tissues and undergoes glomerular filtration. In prion diseases, abnormal prion proteins are found to accumulate in renal tissues and filtered into urine. Urinary prion protein could serve as a diagnostic biomarker. PrPC plays a role in cellular signaling pathways, reno-protective effects, and kidney iron uptake. PrPC signaling affects mitochondrial function via the ERK pathway and is affected by the regulatory influence of microRNAs, small molecules, and signaling proteins. Targeting PrPC in acute and chronic kidney disease could help improve iron homeostasis, ameliorate damage from ischemia/reperfusion injury, and enhance the efficacy of mesenchymal stem/stromal cell or extracellular vesicle-based therapeutic strategies. PrPC may also be under the influence of BMP/Smad signaling and affect the progression of TGF-ß-related renal fibrosis. PrPC conveys TNF-α resistance in some renal cancers, and therefore, the coadministration of anti-PrPC antibodies improves chemotherapy. PrPC can be used to design antibody-drug conjugates, aptamer-drug conjugates, and customized tissue inhibitors of metalloproteinases to suppress cancer. With preclinical studies demonstrating promising results, further research on PrPC in the kidney may lead to innovative PrPC-based therapeutic strategies for renal disease.


Assuntos
Injúria Renal Aguda , Antineoplásicos/uso terapêutico , Neoplasias Renais , Proteínas de Neoplasias , Proteínas PrPC , Doenças Priônicas , Insuficiência Renal Crônica , Transdução de Sinais/efeitos dos fármacos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Fibrose , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Proteínas PrPC/antagonistas & inibidores , Proteínas PrPC/metabolismo , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia
9.
Cancers (Basel) ; 13(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946823

RESUMO

Colorectal cancer (CRC) is one of the leading causes of cancer-related death due to its aggressive metastasis in later stages. Although there is a growing interest in the tumorigenic role of cellular prion protein (PrPC) in the process of metastasis, the precise mechanism behind the cellular communication involving prion proteins remains poorly understood. This study found that hypoxic tumor microenvironment increased the PrPC-expressing exosomes from CRC, and these exosomes regulate the CRC cell behavior and tumor progression depending on the expression of PrPC. Hypoxic exosomes from CRC cells promoted sphere formation, the expression of tumor-inducing genes, migration, invasion, and tumor growth. Furthermore, these exosomes increased endothelial permeability, migration, invasion, and angiogenic cytokine secretion. These effects were associated with PrPC expression. Application of anti-PrPC antibody with 5-fluorouracil significantly suppressed the CRC progression in a murine xenograft model. Taken together, these findings indicate that PrP-expressing exosomes secreted by hypoxic CRC cells are a key factor in the tumorigenic CRC-to-CRC and CRC-to-endothelial cell communication. Significance: These findings suggest that inhibiting PrPC in hypoxic exosomes during chemotherapy may be an effective therapeutic strategy in colorectal cancer.

10.
Front Neurosci ; 15: 654785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912006

RESUMO

In neurodegenerative diseases, neurodegeneration has been related to several mitochondrial dynamics imbalances such as excessive fragmentation of mitochondria, impaired mitophagy, and blocked mitochondria mitochondrial transport in axons. Mitochondria are dynamic organelles, and essential for energy conversion, neuron survival, and cell death. As mitochondrial dynamics have a significant influence on homeostasis, in this review, we mainly discuss the role of mitochondrial dynamics in several neurodegenerative diseases. There is evidence that several mitochondrial dynamics-associated proteins, as well as related pathways, have roles in the pathological process of neurodegenerative diseases with an impact on mitochondrial functions and metabolism. However, specific pathological mechanisms need to be better understood in order to propose new therapeutic strategies targeting mitochondrial dynamics that have shown promise in recent studies.

11.
Elife ; 92020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32043969

RESUMO

The signal regulated transcription factors (SRTFs) control the ultimate transcriptional output of signaling pathways. Here, we examined a family of FGF-induced SRTFs - Etv1, Etv 4, and Etv 5 - in murine lens development. Contrary to FGF receptor mutants that displayed loss of ERK signaling and defective cell differentiation, Etv deficiency augmented ERK phosphorylation without disrupting the normal lens fiber gene expression. Instead, the transitional zone for lens differentiation was shifted anteriorly as a result of reduced Jag1-Notch signaling. We also showed that Etv proteins suppresses mTOR activity by promoting Tsc2 expression, which is necessary for the nuclei clearance in mature lens. These results revealed the functional divergence between Etv and FGF in lens development, demonstrating that these SRTFs can operate outside the confine of their upstream signaling.


Many cells contain proteins known as signal-induced transcription factors, which are poised to receive messages from the environment and then react by activating genes required for the cell to respond appropriately. It is commonly thought that these transcription factors faithfully follow the instructions they receive from the external signal: for instance, if the message was to encourage the cell to grow, the transcription factors would switch on growth-related genes. As the eyes of mice and other mammals develop, a signal known as FGF is required for certain cells to specialize into lens fiber cells: these long, thin, transparent cells form the bulk of the lens, the structure that allows focused vision. Previous studies suggest that FGF activates three transcription factors known as Etv1, Etv4 and Etv5, but their precise roles in the development of the lens has remained unclear. Here, Garg, Hannan, Wang et al. confirm that FGF signaling does indeed activate all three proteins. However, mutant mice that lacked Etv1, Etv4 and Etv5 still created lens fiber cells, suggesting that the transcription factors are largely unnecessary for lens fiber cells formation. Instead, the Etv proteins participated in a cascade of molecular events involving a protein called Notch; as a result, if the transcription factors were absent, the lens fiber cells formed prematurely. In addition, deactivating Etv1, Etv4 and Etv5 also promoted the activity of a protein which interfered with the removal of internal cell compartments, a process required for lens fiber cells to mature properly. These findings reveal that the roles of Etv1, Etv4 and Etv5 deviate from and even oppose FGF signaling in the lenses of mice. Transcription factors control the ultimate fate of a cell, and there is therefore increased interest in targeting them for therapy. The work by Garg, Hannan, Wang et al. reveals an unexpected complexity in how these proteins respond to upstream signals, highlighting the importance of further dissecting these relationships.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/fisiologia , Cristalino/crescimento & desenvolvimento , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores Notch/metabolismo , Fatores de Transcrição/fisiologia , Animais , Cristalinas/metabolismo , Células Epiteliais/fisiologia , Proteína Jagged-1/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Proteínas Proto-Oncogênicas c-maf/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...