Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 234: 112545, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36049288

RESUMO

Clinical diagnostics for SARS-CoV-2 infection usually comprises the sampling of throat or nasopharyngeal swabs that are invasive and create patient discomfort. Hence, saliva is attempted as a sample of choice for the management of COVID-19 outbreaks that cripples the global healthcare system. Although limited by the risk of eliciting false-negative and positive results, tedious test procedures, requirement of specialized laboratories, and expensive reagents, nucleic acid-based tests remain the gold standard for COVID-19 diagnostics. However, genetic diversity of the virus due to rapid mutations limits the efficiency of nucleic acid-based tests. Herein, we have demonstrated the simplest screening modality based on label-free surface enhanced Raman scattering (LF-SERS) for scrutinizing the SARS-CoV-2-mediated molecular-level changes of the saliva samples among healthy, COVID-19 infected and COVID-19 recovered subjects. Moreover, our LF-SERS technique enabled to differentiate the three classes of corona virus spike protein derived from SARS-CoV-2, SARS-CoV and MERS-CoV. Raman spectral data was further decoded, segregated and effectively managed with the aid of machine learning algorithms. The classification models built upon biochemical signature-based discrimination method of the COVID-19 condition from the patient saliva ensured high accuracy, specificity, and sensitivity. The trained support vector machine (SVM) classifier achieved a prediction accuracy of 95% and F1-score of 94.73%, and 95.28% for healthy and COVID-19 infected patients respectively. The current approach not only differentiate SARS-CoV-2 infection with healthy controls but also predicted a distinct fingerprint for different stages of patient recovery. Employing portable hand-held Raman spectrophotometer as the instrument and saliva as the sample of choice will guarantee a rapid and non-invasive diagnostic strategy to warrant or assure patient comfort and large-scale population screening for SARS-CoV-2 infection and monitoring the recovery process.


Assuntos
COVID-19 , Ácidos Nucleicos , Inteligência Artificial , COVID-19/diagnóstico , Teste para COVID-19 , Atenção à Saúde , Humanos , SARS-CoV-2 , Saliva
2.
ACS Omega ; 7(11): 9164-9171, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35350360

RESUMO

Edible oil adulteration is a common and serious issue faced by human societies across the world. Iodine value (IV), the total unsaturation measure, is an authentication tool used by food safety officers and industries for edible oils. Current wet titrimetric methods (e.g., Wijs method) employed for IV estimation use dangerous chemicals and elaborate procedures for analysis. Alternate approaches for oil analysis require sophisticated and costly equipment such as gas chromatography (GC), liquid chromatography, high-performance liquid chromatography, mass spectrometry (MS), UV-Visible, and nuclear magnetic resonance spectroscopies. Mass screening of the samples from the market and industrial environment requires a greener, fast, and more robust technique and is an unmet need. Herein, we present a handheld Raman spectrometer-based methodology for fast IV estimation. We conducted a detailed Raman spectroscopic investigation of coconut oil, sunflower oil, and intentionally adulterated mixtures with a handheld device having a 785 nm excitation source. The obtained data were analyzed in conjunction with the GC-MS results and the conventional wet Wijs titrimetric estimated IVs. Based on these studies, a specific equation for IV estimation is derived from the intensity of identified Raman spectral bands. Further, an algorithm is designed to automate the signal processing and IV estimation, and a stand-alone graphical user interface is created in user-friendly LabVIEW software. The data acquisition and analysis require < 2 minutes, and the estimated statistical parameters such as the R 2 value (0.9), root-mean-square error of calibration (1.3), and root-mean-square error of prediction (0.9) indicate that the demonstrated method has a high precision level. Also, the limit of detection and the limit of quantification for IV estimation through the current approach is ∼1 and ∼3 gI2/100 g oil, respectively. The IVs of different oils, including hydrogenated vegetable oils, were evaluated, and the results show an excellent correlation between the estimated and reported ones.

3.
Chemistry ; 26(48): 11013-11023, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32301186

RESUMO

Five extended π-conjugated systems with electron donor (D) and acceptor (A) moieties have been synthesized. Their basic D-A-D structural motif is a benzothiadiazole unit symmetrically equipped with two thiophene rings (S2T). Its variants include 1) the same molecular framework in which sulfur is replaced by selenium (Se2T), also with four thiophene units (Se4T) and 2) a D'-D-A-D system having a N-carbazole donor moiety at one end (CS2T) and a D'-D-A-D-A' array with a further acceptor carbonyl unit at the other extremity (CS2TCHO). The goal is taking advantage of the intense luminescence and large Stokes shifts of the five molecules for use in luminescent solar concentrators (LSCs). All of them exhibit intense absorption spectra in the UV/Vis region down to 630 nm, which are fully rationalized by DFT. Emission properties have been studied in CH2 Cl2 (298 and 77 K) as well as in PMMA and PDMS matrices, measuring photoluminescence quantum yields (up to 98 %) and other key optical parameters. The dye-PMMA systems show performances comparable to the present state-of-the-art, in terms of optical and external quantum efficiencies (OQE=47.6 % and EQE=31.3 %, respectively) and flux gain (F=10.3), with geometric gain close to 90. LSC devices have been fabricated and tested in which the five emitters are embedded in PDMS and their wave-guided VIS luminescence feeds crystalline silicon solar cells.

4.
Chem Asian J ; 13(11): 1492-1499, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29573188

RESUMO

Herein, we combine the ideas of concerted emission from fluorophore ensembles and its further amplification through FRET in an organic-inorganic hybrid approach. Spherical and highly fluorescent organic nanoparticles (FONPs, Φf =0.38), prepared by the self-assembly of oligo(phenylene ethynylene) (OPE) molecules, were selected as a potential donor material. This organic core was then decorated with a shell of fluorescent CdSe/ZnS core-shell quantum dots (QDs; ≅5.5 nm, Φf =0.27) with the aid of a bifunctional ligand, mercaptopropionic acid. Its high extinction coefficient (ϵ≈4.1×105 m-1 cm-1 ) and good spectral match with the emission of the FONPs (J(λ)≈4.08×1016 m-1 cm-1 nm4 ) made them a better acceptor candidate to constitute an efficient FRET pair (ΦFRET =0.8). As a result, the QD fluorescence intensity was enhanced by more than twofold. The fundamental calculations carried out indicated an improvement in all the FRET parameters as the number of QDs around the FONPs was increased. This, together with the localization of multiple QDs in a nanometric dimension (volume≈1.8×106  nm3 ), gave highly bright reddish luminescent hybrid particles as visualized under a fluorescence microscope.

5.
J Am Chem Soc ; 128(6): 1907-13, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16464092

RESUMO

Ligand-capped gold nanoparticles were synthesized by capping monothiol derivatives of 2,2'-dipyridyl onto the surface of Au nanoparticles (Au-BT). The average size of the metal core is around 4 nm, with a shell of approximately 340 bipyridine ligands around the Au nanoparticle. The high local concentration of the chelating ligands ( approximately 5 M) around the Au nanoparticle makes these particles excellent ion sponges, and their complexation with Eu(III)/Tb(III) ions yields phosphorescent nanomaterials. Absorption spectral studies confirm a 1:3 complexation between Eu(III)/Tb(III) ions and bipyridines, functionalized on the surface of Au nanoparticles. The red-emitting Au-BT:Eu(III) complex exhibits a long lifetime of 0.36 ms with six line-like emission peaks, whereas the green-emitting Au-BT:Tb(III) complex exhibits a lifetime of 0.7 ms with four line-like emission peaks. These phosphorescent nanomaterials, designed by linking BT:Eu(III) complexes to Au nanoparticles, were further utilized as sensors for metal cations. A dramatic decrease in the luminescence was observed upon addition of alkaline earth metal ions (Ca(2+), Mg(2+)) and transition metal ions (Cu(2+), Zn(2+), Ni(2+)), resulting from an isomorphous substitution of Eu(III) ions, whereas the luminescence intensity was not influenced by the addition of Na(+) and K(+) ions. Direct interaction of bipyridine-capped Au nanoparticles with Cu(2+) ions brings the nanohybrid systems closer, leading to the formation of three-dimensional superstructures. Strong interparticle plasmon interactions were observed in these closely spaced Au nanoparticles.


Assuntos
Ouro/química , Substâncias Luminescentes/química , Nanoestruturas/química , 2,2'-Dipiridil/química , Técnicas Biossensoriais , Európio/química , Luminescência , Térbio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...