Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15654, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730862

RESUMO

Cobalt oxide, nickel oxide and cobalt/nickel binary oxides were synthesised by electrodeposition. To fine tune composition of CoNi alloys, growth parameters including voltage, electrolyte pH/concentration and deposition time were varied. These produced nanomaterials were used as binder free electrodes in supercapacitor cells and tested using three electrode setup in 2 MKOH aqueous electrolyte. Cyclic voltammetry and galvanostatic charge/discharge were used at different scan rates (5-100 mV/s) and current densities (1-10 A/g) respectively to investigate the capacitive behaviour and measure the capacitance of active material. Electrochemical impedance spectroscopy was used to analyse the resistive/conductive behaviours of these electrodes in frequency range of 100 kHz to 0.01 Hz at applied voltage of 10 mV. Binary oxide electrode displayed superior electrochemical performance with the specific capacitance of 176 F/g at current density of 1 A/g. This hybrid electrode also displayed capacitance retention of over 83% after 5000 charge/discharge cycles. Cell displayed low solution resistance of 0.35 Ω along with good conductivity. The proposed facile approach to synthesise binder free blended metal electrodes can result in enhanced redox activity of pseudocapacitive materials. Consequently, fine tuning of these materials by controlling the cobalt and nickel contents can assist in broadening their applications in electrochemical energy storage in general and in supercapacitors in particular.

2.
Nanotechnology ; 34(18)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36716488

RESUMO

Aiming to obtain hybrid magneto-plasmonic nanostructures, we have developed multisegmented and core/shell structured Fe-Au nanorods using template assisted electrochemical deposition. A facile method of tuning the growth pattern of multisegmented nanorods into core/shell structured is demonstrated. With a precise control of current density and deposition time, a brick-stacked wire like growth led to the formation of hollow nanotubes that could be further tuned to multilayered hollow nanotubes and core/shell structured nanorods. TEM imaging and STEM-EELS technique were used to explore the morphology, microstructure and the distribution of Au and Fe in the nanorods. The easy magnetization direction was found to be perpendicular to the nanorods' growth direction in the segmented nanorods. On the other hand, core/shell nanorods exhibited isotropic behavior. Our findings provide deeper insights into the fabrication of hybrid nanorods and the opportunity to tune the fabrication method to vary their morphology accordingly. Such studies will benefit design of hybrid nanorods with specific morphologies and physical properties and hence their integration into sensing, spintronics and other potential biomedical and technological applications.

3.
Nanomaterials (Basel) ; 11(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34835808

RESUMO

Cobalt nanowires have been synthesized by electrochemical deposition using track-etched anodized aluminum oxide (AAO) templates. Nanowires with varying spacing-to-diameter ratios were prepared, and their magnetic properties were investigated. It is found that the nanowires' easy magnetization direction switches from parallel to perpendicular to the nanowire growth direction when the nanowire's spacing-to-diameter ratio is reduced below 0.7, or when the nanowires' packing density is increased above 5%. Upon further reduction in the spacing-to-diameter ratio, nanowires' magnetic properties exhibit an isotropic behavior. Apart from shape anisotropy, strong dipolar interactions among nanowires facilitate additional uniaxial anisotropy, favoring an easy magnetization direction perpendicular to their growth direction. The magnetic interactions among the nanowires were studied using the standard method of remanence curves. The demagnetization curves and Delta m (Δm) plots showed that the nanowires interact via dipolar interactions that act as an additional uniaxial anisotropy favoring an easy magnetization direction perpendicular to the nanowire growth direction. The broadening of the dipolar component of Δm plots indicate an increase in the switching field distribution with the increase in the nanowires' diameter. Our findings provide an important insight into the magnetic behavior of cobalt nanowires, meaning that it is crucial to design them according to the specific requirements for the application purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...