Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 32(11): e12884, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32662600

RESUMO

The hypothalamic tuberoinfundibular dopaminergic (TIDA) neurones are critical with respect to regulating prolactin secretion from the anterior pituitary. Under most physiological conditions, they are stimulated by prolactin to release dopamine into the median eminence which subsequently suppresses further prolactin secretion from the lactotrophs. During lactation, the TIDA neurones are known to undergo both electrophysiological and neurochemical changes that alleviate this negative-feedback, thus allowing circulating prolactin levels to rise. The present study aimed to determine whether TIDA neurone morphology, most notably spine density, is also modified during lactation. This was achieved by stereotaxically injecting the arcuate nucleus of female, tyrosine hydroxylase-promoter driven Cre-recombinase transgenic rats with Cre-dependent adeno-associated virus-expressing Brainbow. This resulted in the highly specifici transfection of between 10% and 30% of the TIDA neurones, thus allowing the morphologies on multiple individual neurones to be examined in a single hypothalamic slice. The transfected neurones exhibited a range of complex forms, including a diversity of soma and location of axonal origin. Neuronal spine counting showed that the density of somatic, but not dendritic, spines was significantly higher during lactation than at any other reproductive stage. There was also a significant fall in somatic spine density across the oestrous cycle from dioestrus to oestrus. Although the functional characteristics of the additional somatic spines have not been determined, if, as might be expected, they represent an increased excitatory input to the TIDA neurones, this could have important physiological implications by perhaps supporting altered neurotransmitter release at their neuroendocrine terminals. Enhanced excitatory input may, for example, favour the release of the opioid peptide enkephalin rather than dopamine, which is potentially significant because the expression of the peptide is known to increase in the TIDA neurones during lactation and, in contrast to dopamine, it stimulates rather than inhibits prolactin secretion from the pituitary.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Ciclo Estral/fisiologia , Hipotálamo/fisiologia , Lactação/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Núcleo Arqueado do Hipotálamo , Axônios/fisiologia , Espinhas Dendríticas/fisiologia , Feminino , Hipotálamo/citologia , Neurônios/fisiologia , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Long-Evans , Ratos Transgênicos , Tirosina 3-Mono-Oxigenase/genética
2.
J Chem Neuroanat ; 90: 40-48, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29217488

RESUMO

Co-localization of the expression of the dopamine transporter (DAT) with the catecholamine synthesising enzyme tyrosine hydroxylase (TH) has been investigated using transgenic mice expressing Cre recombinase (Cre) dependent green fluorescent protein (GFP) under the control of the DAT promoter (DATIREScre/GFP). Brain sections from adult female mice were stained for Cre-induced GFP and TH using immunohistochemistry, revealing a high degree of co-expression in the midbrain dopaminergic neurons (A8-10) with the exception of the periaqueductal and dorsal raphe nuclei where dual-labelling was notably lower. In contrast, most of the rostral groups of TH-expressing neurons in the forebrain (A11, A13 - A15) showed little or no co-localization with Cre-induced GFP. Interestingly, a subpopulation of about 30% of the TH-immunoreactive neurons in the arcuate nucleus (A12) also express GFP staining. This observation supports the proposal that this hypothalamic cluster of dopaminergic neurons is neurochemically, and thus potentially functionally, heterogeneous. This study extends earlier literature focusing primarily on DAT expression in midbrain structures to demonstrate a heterogeneity of DAT and TH co-localization in forebrain neurons, particularly those in the hypothalamus. It also highlights the importance of carefully selecting and validating transgenic mouse lines when studying dopaminergic neurons.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/análise , Neurônios Dopaminérgicos/metabolismo , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Tirosina 3-Mono-Oxigenase/análise , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/biossíntese , Neurônios Dopaminérgicos/citologia , Feminino , Integrases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tirosina 3-Mono-Oxigenase/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...