Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940470

RESUMO

SoxB1 transcription factors (Sox2/3) are well known for their role in early neural fate specification in the embryo, but little is known about functional roles for SoxB1 factors in non-neural ectodermal cell types, such as the neural plate border (NPB). Using Xenopus laevis, we set out to determine if SoxB1 transcription factors have a regulatory function in NPB formation. Herein, we show that SoxB1 factors are necessary for NPB formation, and that prolonged SoxB1 factor activity blocks the transition from a NPB to a neural crest state. Using ChIP-seq we demonstrate that Sox3 is enriched upstream of NPB genes in early NPB cells and in blastula stem cells. Depletion of SoxB1 factors in blastula stem cells results in downregulation of NPB genes. Finally, we identify Pou5f3 factors as potential Sox3 partners in regulating the formation of the NPB and show their combined activity is needed for normal NPB gene expression. Together, these data identify a novel role for SoxB1 factors in the establishment and maintenance of the NPB, in part through partnership with Pou5f3 factors.

2.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808794

RESUMO

SoxB1 transcription factors (Sox2/3) are well known for their role in early neural fate specification in the embryo, but little is known about functional roles for SoxB1 factors in non-neural ectodermal cell types, such as the neural plate border (NPB). Using Xenopus laevis , we set out to determine if SoxB1 transcription factors have a regulatory function in NPB formation. Herein, we show that SoxB1 factors are necessary for NPB formation, and that prolonged SoxB1 factor activity blocks the transition from a NPB to a neural crest state. Using ChIP-seq we demonstrate that Sox3 is enriched upstream of NPB genes in early NPB cells and, surprisingly, in blastula stem cells. Depletion of SoxB1 factors in blastula stem cells results in downregulation of NPB genes. Finally, we identify Pou5f3 factors as a potential SoxB1 partners in regulating the formation of the NPB and show their combined activity is needed to maintain NPB gene expression. Together, these data identify a novel role for SoxB1 factors in the establishment and maintenance of the NPB, in part through partnership with Pou5f3 factors.

3.
Semin Cell Dev Biol ; 138: 36-44, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35534333

RESUMO

Neural crest cells are central to vertebrate development and evolution, endowing vertebrates with a "new head" that resulted in morphological, physiological, and behavioral features that allowed vertebrates to become active predators. One remarkable feature of neural crest cells is their multi-germ layer potential that allows for the formation of both ectodermal (pigmentation, peripheral glia, sensory neurons) and mesenchymal (connective tissue, cartilage/bone, dermis) cell types. Understanding the cellular and evolutionary origins of this broad cellular potential in the neural crest has been a long-standing focus for developmental biologists. Here, we review recent work that has demonstrated that neural crest cells share key features with pluripotent blastula stem cells, including expression of the Yamanaka stem cell factors (Oct3/4, Klf4, Sox2, c-Myc). These shared features suggest that pluripotency is either retained in the neural crest from blastula stages or subsequently reactivated as the neural crest forms. We highlight the cellular and molecular parallels between blastula stem cells and neural crest cells and discuss the work that has led to current models for the cellular origins of broad potential in the crest. Finally, we explore how these themes can provide new insights into how and when neural crest cells and pluripotency evolved in vertebrates and the evolutionary relationship between these populations.


Assuntos
Crista Neural , Células-Tronco Pluripotentes , Animais , Crista Neural/metabolismo , Vertebrados/genética , Ectoderma , Células-Tronco Pluripotentes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Evolução Biológica
4.
bioRxiv ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38187687

RESUMO

The neural crest is vertebrate-specific stem cell population that helped drive the origin and evolution of the vertebrate clade. A distinguishing feature of these stem cells is their multi-germ layer potential, which has drawn developmental and evolutionary parallels to another stem cell population-pluripotent embryonic stem cells (animal pole cells or ES cells) of the vertebrate blastula. Here, we investigate the evolutionary origins of neural crest potential by comparing neural crest and pluripotency gene regulatory networks (GRNs) in both jawed ( Xenopus ) and jawless (lamprey) vertebrates. Through comparative gene expression analysis and transcriptomics, we reveal an ancient evolutionary origin of shared regulatory factors between neural crest and pluripotency GRNs that dates back to the last common ancestor of extant vertebrates. Focusing on the key pluripotency factor pou5 (formerly oct4), we show that the lamprey genome encodes a pou5 ortholog that is expressed in animal pole cells, as in jawed vertebrates, but is absent from the neural crest. However, gain-of-function experiments show that both lamprey and Xenopus pou5 enhance neural crest formation, suggesting that pou5 was lost from the neural crest of jawless vertebrates. Finally, we show that pou5 is required for neural crest specification in jawed vertebrates and that it acquired novel neural crest-enhancing activity after evolving from an ancestral pou3 -like clade that lacks this functionality. We propose that a pluripotency-neural crest GRN was assembled in stem vertebrates and that the multi-germ layer potential of the neural crest evolved by deploying this regulatory program.

5.
Front Physiol ; 11: 986, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903576

RESUMO

Neural crest and placodes are key innovations of the vertebrate clade. These cells arise within the dorsal ectoderm of all vertebrate embryos and have the developmental potential to form many of the morphological novelties within the vertebrate head. Each cell population has its own distinct developmental features and generates unique cell types. However, it is essential that neural crest and placodes associate together throughout embryonic development to coordinate the emergence of several features in the head, including almost all of the cranial peripheral sensory nervous system and organs of special sense. Despite the significance of this developmental feat, its evolutionary origins have remained unclear, owing largely to the fact that there has been little comparative (evolutionary) work done on this topic between the jawed vertebrates and cyclostomes-the jawless lampreys and hagfishes. In this review, we briefly summarize the developmental mechanisms and genetics of neural crest and placodes in both jawed and jawless vertebrates. We then discuss recent studies on the role of neural crest and placodes-and their developmental association-in the head of lamprey embryos, and how comparisons with jawed vertebrates can provide insights into the causes and consequences of this event in early vertebrate evolution.

6.
Genesis ; 58(5): e23356, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32049434

RESUMO

Vertebrates possess paired cranial sensory ganglia derived from two embryonic cell populations, neural crest and placodes. Cranial sensory ganglia arose prior to the divergence of jawed and jawless vertebrates, but the developmental mechanisms that facilitated their evolution are unknown. Using gene expression and cell lineage tracing experiments in embryos of the sea lamprey, Petromyzon marinus, we find that in the cranial ganglia we targeted, development consists of placode-derived neuron clusters in the core of ganglia, with neural crest cells mostly surrounding these neuronal clusters. To dissect functional roles of neural crest and placode cell associations in these developing cranial ganglia, we used CRISPR/Cas9 gene editing experiments to target genes critical for the development of each population. Genetic ablation of SoxE2 and FoxD-A in neural crest cells resulted in differentiated cranial sensory neurons with abnormal morphologies, whereas deletion of DlxB in cranial placodes resulted in near-total loss of cranial sensory neurons. Taken together, our cell-lineage, gene expression, and gene editing results suggest that cranial neural crest cells may not be required for cranial ganglia specification but are essential for shaping the morphology of these sensory structures. We propose that the association of neural crest and placodes in the head of early vertebrates was a key step in the organization of neurons and glia into paired sensory ganglia.


Assuntos
Gânglios Sensitivos/crescimento & desenvolvimento , Lampreias/crescimento & desenvolvimento , Crista Neural/crescimento & desenvolvimento , Neurogênese , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Gânglios Sensitivos/citologia , Gânglios Sensitivos/metabolismo , Lampreias/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Crânio/crescimento & desenvolvimento
7.
J Exp Biol ; 223(Pt Suppl 1)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034037

RESUMO

Lampreys and hagfishes are the only surviving relicts of an ancient but ecologically dominant group of jawless fishes that evolved in the seas of the Cambrian era over half a billion years ago. Because of their phylogenetic position as the sister group to all other vertebrates (jawed vertebrates), comparisons of embryonic development between jawless and jawed vertebrates offers researchers in the field of evolutionary developmental biology the unique opportunity to address fundamental questions related to the nature of our earliest vertebrate ancestors. Here, we describe how genetic analysis of embryogenesis in the sea lamprey (Petromyzon marinus) has provided insight into the origin and evolution of developmental-genetic programs in vertebrates. We focus on recent work involving CRISPR/Cas9-mediated genome editing to study gene regulatory mechanisms involved in the development and evolution of neural crest cells and new cell types in the vertebrate nervous system, and transient transgenic assays that have been instrumental in dissecting the evolution of cis-regulatory control of gene expression in vertebrates. Finally, we discuss the broad potential for these functional genomic tools to address previously unanswerable questions related to the evolution of genomic regulatory mechanisms as well as issues related to invasive sea lamprey population control.


Assuntos
Feiticeiras (Peixe) , Petromyzon , Animais , Evolução Molecular , Lampreias/genética , Petromyzon/genética , Filogenia , Vertebrados
8.
Open Biol ; 10(1): 190285, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31992146

RESUMO

The neural crest is a vertebrate-specific migratory stem cell population that generates a remarkably diverse set of cell types and structures. Because many of the morphological, physiological and behavioural novelties of vertebrates are derived from neural crest cells, it is thought that the origin of this cell population was an important milestone in early vertebrate history. An outstanding question in the field of vertebrate evolutionary-developmental biology (evo-devo) is how this cell type evolved in ancestral vertebrates. In this review, we briefly summarize neural crest developmental genetics in vertebrates, focusing in particular on the gene regulatory interactions instructing their early formation within and migration from the dorsal neural tube. We then discuss how studies searching for homologues of neural crest cells in invertebrate chordates led to the discovery of neural crest-like cells in tunicates and the potential implications this has for tracing the pre-vertebrate origins of the neural crest population. Finally, we synthesize this information to propose a model to explain the origin of neural crest cells. We suggest that at least some of the regulatory components of early stages of neural crest development long pre-date vertebrate origins, perhaps dating back to the last common bilaterian ancestor. These components, originally directing neuroectodermal patterning and cell migration, served as a gene regulatory 'scaffold' upon which neural crest-like cells with limited migration and potency evolved in the last common ancestor of tunicates and vertebrates. Finally, the acquisition of regulatory programmes controlling multipotency and long-range, directed migration led to the transition from neural crest-like cells in invertebrate chordates to multipotent migratory neural crest in the first vertebrates.


Assuntos
Evolução Biológica , Crista Neural/citologia , Crista Neural/embriologia , Neurogênese , Animais , Diferenciação Celular , Movimento Celular , Invertebrados , Vertebrados
9.
Dev Biol ; 453(2): 180-190, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31211947

RESUMO

A major challenge in vertebrate evolution is to identify the gene regulatory mechanisms that facilitated the origin of neural crest cells and placodes from ancestral precursors in invertebrates. Here, we show in lamprey, a primitively jawless vertebrate, that the transcription factor Snail is expressed simultaneously throughout the neural plate, neural plate border, and pre-placodal ectoderm in the early embryo and is then upregulated in the CNS throughout neurogenesis. Using CRISPR/Cas9-mediated genome editing, we demonstrate that Snail plays functional roles in all of these embryonic domains or their derivatives. We first show that Snail patterns the neural plate border by repressing lateral expansion of Pax3/7 and activating nMyc and ZicA. We also present evidence that Snail is essential for DlxB-mediated establishment of the pre-placodal ectoderm but is not required for SoxB1a expression during formation of the neural plate proper. At later stages, Snail regulates formation of neural crest-derived and placode-derived PNS neurons and controls CNS neural differentiation in part by promoting cell survival. Taken together with established functions of invertebrate Snail genes, we identify a pan-bilaterian mechanism that extends to jawless vertebrates for regulating neurogenesis that is dependent on Snail transcription factors. We propose that ancestral vertebrates deployed an evolutionarily conserved Snail expression domain in the CNS and PNS for neurogenesis and then acquired derived functions in neural crest and placode development by recruitment of regulatory genes downstream of neuroectodermal Snail activity. Our results suggest that Snail regulatory mechanisms in vertebrate novelties such as the neural crest and placodes may have emerged from neurogenic roles that originated early in bilaterian evolution.


Assuntos
Evolução Biológica , Lampreias/embriologia , Lampreias/genética , Crista Neural/metabolismo , Neurogênese , Fatores de Transcrição da Família Snail/metabolismo , Animais , Diferenciação Celular/genética , Sobrevivência Celular/genética , Ectoderma/embriologia , Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Neurogênese/genética , Neurônios/citologia , Filogenia , Fatores de Transcrição da Família Snail/genética
10.
Development ; 145(14)2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29980564

RESUMO

The origin of the vertebrate head is one of the great unresolved issues in vertebrate evolutionary developmental biology. Although many of the novelties in the vertebrate head and pharynx derive from the neural crest, it is still unknown how early vertebrates patterned the neural crest within the ancestral body plan they inherited from invertebrate chordates. Here, using a basal vertebrate, the sea lamprey, we show that homologs of Semaphorin3F (Sema3F) ligand and its Neuropilin (Nrp) receptors show complementary and dynamic patterns of expression that correlate with key periods of neural crest development (migration and patterning of cranial neural crest-derived structures). Using CRISPR/Cas9-mediated mutagenesis, we demonstrate that lamprey Sema3F is essential for patterning of neural crest-derived melanocytes, cranial ganglia and the head skeleton, but is not required for neural crest migration or patterning of trunk neural crest derivatives. Based on comparisons with jawed vertebrates, our results suggest that the deployment of Nrp-Sema3F signaling, along with other intercellular guidance cues, was pivotal in allowing early vertebrates to organize and pattern cranial neural crest cells into many of the hallmark structures that define the vertebrate head.


Assuntos
Padronização Corporal , Cabeça/embriologia , Crista Neural/embriologia , Neuropilinas/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Animais , Sistemas CRISPR-Cas , Movimento Celular , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Lampreias/genética , Melanócitos/citologia , Melanócitos/metabolismo , Crista Neural/citologia , Neuropilinas/genética , Filogenia , Semaforinas/genética , Células Receptoras Sensoriais/metabolismo , Crânio/citologia
11.
Dev Biol ; 441(1): 176-190, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29981309

RESUMO

Glial cells in the nervous system regulate and support many functions related to neuronal activity. Understanding how the vertebrate nervous system has evolved demands a greater understanding of the mechanisms controlling evolution and development of glial cells in basal vertebrates. Among vertebrate glia, oligodendrocytes form an insulating myelin layer surrounding axons of the central nervous system (CNS) in jawed vertebrates. Jawless vertebrates lack myelinated axons but it is unclear when oligodendrocytes or the regulatory mechanisms controlling their development evolved. To begin to investigate the evolution of mechanisms controlling glial development, we identified key genes required for the differentiation of oligodendrocytes in gnathostomes, including Nkx2.2, SoxE genes, and PDGFR, analyzed their expression, and used CRISPR/Cas9 genome editing to perturb their functions in a primitively jawless vertebrate, the sea lamprey. We show in lamprey that orthologs required for oligodendrocyte development in jawed vertebrates are expressed in the lamprey ventral neural tube, in similar locations where gnathostome oligodendrocyte precursor cells (OPC) originate. In addition, they appear to be under the control of conserved mechanisms that regulate OPC development in jawed vertebrates and may also function in gliogenesis. Our results suggest that although oligodendrocytes first emerged in jawed vertebrates, regulatory mechanisms required for their development predate the divergence of jawless and jawed vertebrates.


Assuntos
Embrião não Mamífero/embriologia , Proteínas de Peixes , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Lampreias , Tubo Neural/embriologia , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Animais , Embrião não Mamífero/citologia , Proteínas de Peixes/biossíntese , Proteínas de Peixes/genética , Lampreias/embriologia , Lampreias/genética , Tubo Neural/citologia , Neuroglia/citologia , Oligodendroglia/citologia
12.
Dev Biol ; 428(1): 176-187, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28624345

RESUMO

The acquisition of neural crest cells was a key step in the origin of the vertebrate body plan. An outstanding question is how neural crest cells acquired their ability to undergo an epithelial-mesenchymal transition (EMT) and migrate extensively throughout the vertebrate embryo. We tested if differential regulation of classical cadherins-a highly conserved feature of neural crest EMT and migration in jawed vertebrates-mediates these cellular behaviors in lamprey, a basal jawless vertebrate. Lamprey has single copies of the type I and type II classical cadherins (CadIA and CadIIA). CadIIA is expressed in premigratory neural crest, and requires the transcription factor Snail for proper expression, yet CadIA is never expressed in the neural tube during neural crest development, suggesting that differential regulation of classical cadherin expression is not required to initiate neural crest migration in basal vertebrates. We hypothesize that neural crest cells evolved by retention of regulatory programs linking distinct mesenchymal and multipotency properties, and emigrated from the neural tube without differentially regulating type I/type II cadherins. Our results point to the coupling of mesenchymal state and multipotency as a key event facilitating the origin of migratory neural crest cells.


Assuntos
Caderinas/metabolismo , Movimento Celular/fisiologia , Lampreias/embriologia , Crista Neural/embriologia , Fatores de Transcrição da Família Snail/metabolismo , Sequência de Aminoácidos , Animais , Caderinas/genética , Diferenciação Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/citologia , Tubo Neural/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...