Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Clin Microbiol Antimicrob ; 22(1): 68, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550710

RESUMO

BACKGROUND: Mobile phones are widely used and may cause bacterial pathogens to spread among various professionals. Staphylococcus aureus from the mobile phones can contaminate the hands of food vendors and food during the cooking or packaging process. This research aimed to determine the prevalence, enterotoxin genes, and antimicrobial resistance (AMR) profiles of S. aureus contaminating the vendors' mobile phones. METHODS: In this study, 266 mobile phone samples were randomly collected from food vendors selling food on walking streets (n = 139) and in food centers (n = 127) in Phayao province. All samples were identified as S. aureus by the conventional culture method and confirmed species-specific gene by polymerase chain reaction (PCR). Then, all identified S. aureus isolates were tested for antimicrobial susceptibility by broth microdilution method and for the presence of staphylococcal enterotoxin (SE) genes by PCR. RESULTS: The results showed that 12.8% of the mobile phones collected were contaminated with S. aureus. Of 49 S. aureus isolates obtained, 30 (61.2%) were positive for SE genes. The most common SE gene was sea followed by sec, seb, sem, seq, and sel. Moreover, S. aureus was most frequently resistant to penicillin, followed by chloramphenicol and tetracycline, erythromycin, clindamycin, and gentamicin. Methicillin-resistant S. aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and multidrug-resistant (MDR) strains were also detected. CONCLUSIONS: This study showed that mobile phones were an intermediate surface for the transmission of S. aureus, including MDR variants. It indicates that hand hygiene and the decontamination of mobile phones are essential to prevent cross-contamination of S. aureus in food settings.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Enterotoxinas/genética , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , Prevalência , Tailândia , Microbiologia de Alimentos , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana
2.
J Microbiol Biotechnol ; 33(9): 1179-1188, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37317587

RESUMO

Escherichia coli, particularly multidrug-resistant (MDR) strains, is a serious cause of healthcare-associated infections. Development of novel antimicrobial agents or restoration of drug efficiency is required to treat MDR bacteria, and the use of natural products to solve this problem is promising. We investigated the antimicrobial activity of dried green coffee (DGC) beans, coffee pulp (CP), and arabica leaf (AL) crude extracts against 28 isolated MDR E. coli strains and restoration of ampicillin (AMP) efficiency with a combination test. DGC, CP, and AL extracts were effective against all 28 strains, with a minimum inhibitory concentration (MIC) of 12.5-50 mg/ml and minimum bactericidal concentration of 25-100 mg/ml. The CP-AMP combination was more effective than CP or AMP alone, with a fractional inhibitory concentration index value of 0.01. In the combination, the MIC of CP was 0.2 mg/ml (compared to 25 mg/ml of CP alone) and that of AMP was 0.1 mg/ml (compared to 50 mg/ml of AMP alone), or a 125-fold and 500-fold reduction, respectively, against 13-drug resistant MDR E. coli strains. Time-kill kinetics showed that the bactericidal effect of the CP-AMP combination occurred within 3 h through disruption of membrane permeability and biofilm eradication, as verified by scanning electron microscopy. This is the first report indicating that CP-AMP combination therapy could be employed to treat MDR E. coli by repurposing AMP.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Misturas Complexas/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla , Ampicilina/farmacologia
3.
ACS Omega ; 8(19): 16824-16832, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37214721

RESUMO

In this study, a biocellulose (BC) sheet containing Aloe vera gel extract (AE) was developed for application in healing chronic wounds, such as diabetic wounds. The BC sheet was produced by Acetobacter xylinum and then lyophilized to obtain dried sheets. A. vera gel was extracted by precipitation in 35% ammonium sulfate, lyophilized, dried, and incorporated into the BC sheet. The protein content of the AE was 12.32 ± 3.4% w/w, with a molecular weight of ∼20 kDa. The release of TNF-α from lipopolysaccharide-induced RAW264.7 cells was reduced by treatment with AE in a dose-dependent manner. The physicochemical and biological properties of the developed sheet were investigated. Morphological examination of the BC/AE sheet using scanning electron microscopy revealed the 3D construction of nanofibrils, which showed high porosity. The BC/AE sheet exhibited water absorption at 74%, and the release of proteins in the AE reached 97.23% at 4 h. The BC sheet incorporated with proteins in the AE at 283.78 ± 7.7 µg/cm2 can promote the wound healing in streptozotocin-induced diabetic rats. The recovering skin in diabetic wounds treated with the BC/AE sheet exhibited a normal cell arrangement without fibrosis, as revealed by histological staining. The research findings indicate that the BC/AE sheet has potential for applications in wound dressings.

4.
Antibiotics (Basel) ; 11(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36551502

RESUMO

Lung cancer, especially non-small cell lung cancer (NSCLC), is one of the most complex diseases, despite the existence of effective treatments such as chemotherapy and immunotherapy. Since cancer stem cells (CSCs) are responsible for chemo- and radio-resistance, metastasis, and cancer recurrence, finding new therapeutic targets for CSCs is critical. Dinactin is a natural secondary metabolite produced by microorganisms. Recently, dinactin has been revealed as a promising antitumor antibiotic via various mechanisms. However, the evidence relating to cell cycle progression regulation is constrained, and effects on cancer stemness have not been elucidated. Therefore, the aim of this study is to evaluate the new function of dinactin in anti-NSCLC proliferation, focusing on cell cycle progression and cancer stemness properties in Lu99 and A549 cells. Flow cytometry and immunoblotting analyses revealed that 0.1-1 µM of dinactin suppresses cell growth through induction of the G0/G1 phase associated with down-regulation of cyclins A, B, and D3, and cdk2 protein expression. The tumor-sphere forming capacity was used to assess the effect of dinactin on the cancer stemness potential in NSCLC cells. At a concentration of 1 nM, dinactin reduced both the number and size of the tumor-spheres. The quantitative RT-PCR analyses indicated that dinactin suppressed sphere formation by significantly reducing expression of CSC markers (i.e., ALDH1A1, Nanog, Oct4, and Sox2) in Lu99 cells. Consequently, dinactin could be a promising strategy for NSCLC therapy targeting CSCs.

5.
J Microbiol Biotechnol ; 32(8): 1003-1010, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-35879283

RESUMO

The purpose of this study was to examine the phytochemical compounds and antibacterial activity of Coffea robusta leaf extract (RLE). The results indicated that chlorogenic acid (CGA) is a major component of RLE. The minimum inhibitory concentrations (MICs) of RLE against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella Typhimurium were 6.25, 12.5, 12.5, and 12.5 mg/ml, respectively. RLE effectively damages the bacterial cell membrane integrity, as indicated by the high amounts of proteins and nucleic acids released from the bacteria, and disrupts bacterial cell membrane potential and permeability, as revealed via fluorescence analysis. Cytotoxicity testing showed that RLE is slightly toxic toward HepG2 cells at high concentration but exhibited no toxicity toward Caco2 cells. The results from the present study suggest that RLE has excellent potential applicability as an antimicrobial in the food industry.


Assuntos
Coffea , Antibacterianos , Bacillus subtilis , Células CACO-2 , Escherichia coli , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais
6.
Front Nutr ; 9: 865684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548583

RESUMO

Vibrio cholerae is the causative organism of the cholera epidemic, and it remains a serious global health problem, particularly the multidrug-resistant strain, despite the development of several generic drugs and vaccines over time. Natural products have long been exploited for the treatment of various diseases, and this study aimed to evaluate the in vitro antibacterial activity of coffee beans and coffee by-products against V. cholerae antimicrobial resistant strains. A total of 9 aqueous extracts were investigated, including light coffee (LC), medium coffee (MC), dark coffee (DC), dried green coffee (DGC), dried red coffee (DRC), fresh red coffee (FRC), Arabica leaf (AL), Robusta leaf (RL), and coffee pulp (CP). The influential coffee phytochemicals, i.e., chlorogenic acid (CGA), caffeic acid (CA), and caffeine, were determined using HPLC. The antibacterial properties were tested by agar well-diffusion techniques, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were further determined against 20 V. cholerae isolates. The results revealed that all tested strains were sensitive to coffee extracts, with MIC and MBC values in the range of 3.125-25.0 mg/mL and 12.5-50.0 mg/mL, respectively. With a MIC of 6.25 mg/mL, DGC, DRC, and CP appeared to be the most effective compounds against 65, 60, and 55% of clinical strains, respectively. The checkerboard assay revealed that the combination of coffee extract and tetracycline was greater than either treatment alone, with the fractional inhibitory concentration index (FICI) ranging from 0.005 to 0.258. It is important to note that CP had the lowest FICI (0.005) when combined with tetracycline at 60 ng/mL, which is the most effective dose against V. cholerae six-drug resistance strains (azithromycin, colistin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim), with a MIC of 47.5 µg/mL (MIC alone = 12.5 mg/mL). Time killing kinetics analysis suggested that CA might be the most effective treatment for drug-resistant V. cholerae as it reduced bacterial growth by 3 log10 CFU/mL at a concentration of 8 mg/mL within 1 h, via disrupting membrane permeability, as confirmed by scanning electron microscopy (SEM). This is the first report showing that coffee beans and coffee by-product extracts are an alternative for multidrug-resistant V. cholerae treatment.

7.
Antibiotics (Basel) ; 11(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35453268

RESUMO

The spread of multidrug-resistant (MDR) Vibrio cholerae necessitates the development of novel prevention and treatment strategies. This study aims to evaluate the in vitro antibacterial activity of green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against MDR V. cholerae. First, MIC and MBC values were evaluated by broth microdilution techniques against 45 V. cholerae strains. The checkerboard assay was then used to determine the synergistic effect of EGCG and tetracycline. The pharmaceutical mode of action of EGCG was clarified by time-killing kinetics and membrane disruption assay. Our results revealed that all of the 45 clinical isolates were susceptible to EGCG, with MIC and MBC values in the range of 62.5-250 µg/mL and 125-500 µg/mL, respectively. Furthermore, the combination of EGCG and tetracycline was greater than either treatment alone, with a fractional inhibitory concentration index (FICI) of 0.009 and 0.018 in the O1 and O139 representative serotypes, respectively. Time-killing kinetics analysis suggested that EGCG had bactericidal activity for MDR V. cholerae after exposure to at least 62.5 µg/mL EGCG within 1 h. The mode of action of EGCG might be associated with membrane disrupting permeability, as confirmed by scanning electron microscopy. This is the first indication that EGCG is a viable anti-MDR V. cholerae treatment.

8.
Integr Med Res ; 5(4): 324-331, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28462135

RESUMO

BACKGROUND: This study explored the bioactivities and nutrient compositions of coffee (Coffea Arabica L.) pulp which was prepared in three different ways [Coffee Pulp Extracts (CPE) 1-3]. METHODS: The coffee pulp was prepared in three different ways by distinct selecting and freezing processes. The nutritional values, polyphenol contents, antioxidant activity, and antibacterial properties of the coffee pulp as well as the characterization of the active ingredients by liquid chromatography-electrospray ionization-quadrupole-time-of-flight mass spectrometry (LC-ESI-Q-TOF-MS) were evaluated. RESULTS: The chemical profiles of three aqueous extracts were compared and characterized using LC-ESI-QTOF-MS. They showed slightly different nutrient compositions. The total phenolic content was highest in CPE1, and decreased in the following order: CPE1 > CPE2 > CPE3. Among the CPEs tested, CPE1 showed the most potent antioxidant activity with IC50 18 µg/mL and 82 µg/mL by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and 1,1-diphenyl-2-picryl-hydrazyl assay, respectively. Chlorogenic acid and caffeine were the most prominent in CPE1 and it contained more compounds than the others. Moreover, CPE1 demonstrated antibacterial activity against both gram-positive (Staphylococcus aureus and Staphylococcus epidermidis) and gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli). CONCLUSION: These findings indicated that CPE1 has powerful nutrients with antioxidant and antibacterial properties-the potency of which is impacted by the preparation process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...