Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6054, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025867

RESUMO

The homeostatic regulation of sleep is characterized by rebound sleep after prolonged wakefulness, but the molecular and cellular mechanisms underlying this regulation are still unknown. In this study, we show that Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent activity control of parvalbumin (PV)-expressing cortical neurons is involved in homeostatic regulation of sleep in male mice. Prolonged wakefulness enhances cortical PV-neuron activity. Chemogenetic suppression or activation of cortical PV neurons inhibits or induces rebound sleep, implying that rebound sleep is dependent on increased activity of cortical PV neurons. Furthermore, we discovered that CaMKII kinase activity boosts the activity of cortical PV neurons, and that kinase activity is important for homeostatic sleep rebound. Here, we propose that CaMKII-dependent PV-neuron activity represents negative feedback inhibition of cortical neural excitability, which serves as the distributive cortical circuits for sleep homeostatic regulation.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Córtex Cerebral , Homeostase , Neurônios , Parvalbuminas , Sono , Vigília , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Parvalbuminas/metabolismo , Masculino , Sono/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Camundongos , Vigília/fisiologia , Córtex Cerebral/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
PLoS Biol ; 20(10): e3001813, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36194579

RESUMO

The reduced sleep duration previously observed in Camk2b knockout mice revealed a role for Ca2+/calmodulin-dependent protein kinase II (CaMKII)ß as a sleep-promoting kinase. However, the underlying mechanism by which CaMKIIß supports sleep regulation is largely unknown. Here, we demonstrate that activation or inhibition of CaMKIIß can increase or decrease sleep duration in mice by almost 2-fold, supporting the role of CaMKIIß as a core sleep regulator in mammals. Importantly, we show that this sleep regulation depends on the kinase activity of CaMKIIß. A CaMKIIß mutant mimicking the constitutive-active (auto)phosphorylation state promotes the transition from awake state to sleep state, while mutants mimicking subsequent multisite (auto)phosphorylation states suppress the transition from sleep state to awake state. These results suggest that the phosphorylation states of CaMKIIß differently control sleep induction and maintenance processes, leading us to propose a "phosphorylation hypothesis of sleep" for the molecular control of sleep in mammals.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cálcio , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Sono
3.
Cell Mol Gastroenterol Hepatol ; 14(4): 905-924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35835392

RESUMO

BACKGROUND & AIMS: Tissue-clearing and three-dimensional (3D) imaging techniques aid clinical histopathological evaluation; however, further methodological developments are required before use in clinical practice. METHODS: We sought to develop a novel fluorescence staining method based on the classical periodic acid-Schiff stain. We further attempted to develop a 3D imaging system based on this staining method and evaluated whether the system can be used for quantitative 3D pathological evaluation and deep learning-based automatic diagnosis of inflammatory bowel diseases. RESULTS: We successfully developed a novel periodic acid-FAM hydrazide (PAFhy) staining method for 3D imaging when combined with a tissue-clearing technique (PAFhy-3D). This strategy enabled clear and detailed imaging of the 3D architectures of crypts in human colorectal mucosa. PAFhy-3D imaging also revealed abnormal architectural changes in crypts in ulcerative colitis tissues and identified the distributions of neutrophils in cryptitis and crypt abscesses. PAFhy-3D revealed novel pathological findings including spiral staircase-like crypts specific to inflammatory bowel diseases. Quantitative analysis of crypts based on 3D morphologic changes enabled differential diagnosis of ulcerative colitis, Crohn's disease, and non-inflammatory bowel disease; such discrimination could not be achieved by pathologists. Furthermore, a deep learning-based system using PAFhy-3D images was used to distinguish these diseases The accuracies were excellent (macro-average area under the curve = 0.94; F1 scores = 0.875 for ulcerative colitis, 0.717 for Crohn's disease, and 0.819 for non-inflammatory bowel disease). CONCLUSIONS: PAFhy staining and PAFhy-3D imaging are promising approaches for next-generation experimental and clinical histopathology.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Colite Ulcerativa/patologia , Doença de Crohn/diagnóstico por imagem , Doença de Crohn/patologia , Humanos , Hidrazinas , Imageamento Tridimensional , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/patologia , Ácido Periódico , Polissacarídeos , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...