Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunity ; 57(2): 364-378.e9, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301651

RESUMO

Mutations of the CBP/p300 histone acetyltransferase (HAT) domain can be linked to leukemic transformation in humans, suggestive of a checkpoint of leukocyte compartment sizes. Here, we examined the impact of reversible inhibition of this domain by the small-molecule A485. We found that A485 triggered acute and transient mobilization of leukocytes from the bone marrow into the blood. Leukocyte mobilization by A485 was equally potent as, but mechanistically distinct from, granulocyte colony-stimulating factor (G-CSF), which allowed for additive neutrophil mobilization when both compounds were combined. These effects were maintained in models of leukopenia and conferred augmented host defenses. Mechanistically, activation of the hypothalamus-pituitary-adrenal gland (HPA) axis by A485 relayed shifts in leukocyte distribution through corticotropin-releasing hormone receptor 1 (CRHR1) and adrenocorticotropic hormone (ACTH), but independently of glucocorticoids. Our findings identify a strategy for rapid expansion of the blood leukocyte compartment via a neuroendocrine loop, with implications for the treatment of human pathologies.


Assuntos
Medula Óssea , Histona Acetiltransferases , Humanos , Histona Acetiltransferases/metabolismo , Medula Óssea/metabolismo , Histonas/metabolismo , Neutrófilos/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo
2.
Sci Transl Med ; 14(675): eabl3651, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36516268

RESUMO

Genome-wide association studies identifying hundreds of susceptibility loci for autoimmune diseases indicate that genes active in immune cells predominantly mediate risk. However, identification and functional characterization of causal variants remain challenging. Here, we focused on the immunomodulatory role of a protective variant of histone deacetylase 7 (HDAC7). This variant (rs148755202, HDAC7.p.R166H) was identified in a study of low-frequency coding variation in multiple sclerosis (MS). Through transcriptomic analyses, we demonstrate that wild-type HDAC7 regulates genes essential for the function of Foxp3+ regulatory T cells (Tregs), an immunosuppressive subset of CD4 T cells that is generally dysfunctional in patients with MS. Moreover, Treg-specific conditional hemizygous deletion of HDAC7 increased the severity of experimental autoimmune encephalitis (EAE), a mouse model of neuroinflammation. In contrast, Tregs transduced with the protective HDAC7 R166H variant exhibited higher suppressive capacity in an in vitro functional assay, mirroring phenotypes previously observed in patient samples. In vivo modeling of the human HDAC7 R166H variant by generation of a knock-in mouse model bearing an orthologous R150H substitution demonstrated decreased EAE severity linked to transcriptomic alterations of brain-infiltrating Tregs, as assessed by single-cell RNA sequencing. Our data suggest that dysregulation of epigenetic modifiers, a distinct molecular class associated with disease risk, may influence disease onset. Last, our approach provides a template for the translation of genetic susceptibility loci to detailed functional characterization, using in vitro and in vivo modeling.


Assuntos
Esclerose Múltipla , Linfócitos T Reguladores , Camundongos , Animais , Humanos , Esclerose Múltipla/genética , Estudo de Associação Genômica Ampla , Linfócitos T CD4-Positivos , Histona Desacetilases , Modelos Animais de Doenças
3.
Semin Immunopathol ; 44(5): 685-695, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35732977

RESUMO

The brain is an immune-privileged organ such that immune cell infiltration is highly regulated and better tolerating the introduction of antigen to reduce risk of harmful inflammation. Thus, the composition and the nature of the immune response is fundamentally different in the brain where avoiding immunopathology is prioritized compared to other peripheral organs. While the principle of immune privilege in the central nervous system (CNS) still holds true, the role of the immune system in the CNS has been revisited over the recent years. This redefining of immune privilege in the brain is a result of the recent re-discovery of the extensive CNS meningeal lymphatic system and the identification of resident T cells in the brain, meningeal layers, and its surrounding cerebrospinal fluid (CSF) in both humans and rodents. While neuro-immune interactions have been classically studied in the context of neuroinflammatory disease, recent works have also elucidated unconventional roles of immune-derived cytokines in neurological function, highlighting the many implications and potential of neuro-immune interactions. As a result, the study of neuro-immune interactions is becoming increasingly important in understanding both CNS homeostasis and disease. Here, we review the anatomically distinct immune compartments within the brain, the known mechanisms of leukocyte trafficking and infiltration into the CNS and unique transcriptional and functional characteristics of CNS-resident immune cells.


Assuntos
Sistema Nervoso Central , Neuroimunomodulação , Citocinas , Humanos , Sistema Linfático/fisiologia , Linfócitos T
4.
J Immunol ; 207(5): 1377-1387, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34380645

RESUMO

T cells are essential mediators of immune responses against infectious diseases and provide long-lived protection from reinfection. The differentiation of naive to effector T cells and the subsequent differentiation and persistence of memory T cell populations in response to infection is a highly regulated process. E protein transcription factors and their inhibitors, Id proteins, are important regulators of both CD4+ and CD8+ T cell responses; however, their regulation at the protein level has not been explored. Recently, the deubiquitinase USP1 was shown to stabilize Id2 and modulate cellular differentiation in osteosarcomas. In this study, we investigated a role for Usp1 in posttranslational control of Id2 and Id3 in murine T cells. We show that Usp1 was upregulated in T cells following activation in vitro or following infection in vivo, and the extent of Usp1 expression correlated with the degree of T cell expansion. Usp1 directly interacted with Id2 and Id3 following T cell activation. However, Usp1 deficiency did not impact Id protein abundance in effector T cells or alter effector T cell expansion or differentiation following a primary infection. Usp1 deficiency resulted in a gradual loss of memory CD8+ T cells over time and reduced Id2 protein levels and proliferation of effector CD8+ T cell following reinfection. Together, these results identify Usp1 as a player in modulating recall responses at the protein level and highlight differences in regulation of T cell responses between primary and subsequent infection encounters. Finally, our observations reveal differential regulation of Id2/3 proteins between immune versus nonimmune cell types.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteases Específicas de Ubiquitina/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Imunidade Celular , Imunização , Memória Imunológica , Proteína 2 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Processamento de Proteína Pós-Traducional , Proteases Específicas de Ubiquitina/genética
5.
J Exp Med ; 218(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34037670

RESUMO

In response to infection, pathogen-specific CD8 T cells differentiate into functionally diverse effector and memory T cell populations critical for resolving disease and providing durable immunity. Through small-molecule inhibition, RNAi studies, and induced genetic deletion, we reveal an essential role for the chromatin modifier and BET family member BRD4 in supporting the differentiation and maintenance of terminally fated effector CD8 T cells during infection. BRD4 bound diverse regulatory regions critical to effector T cell differentiation and controlled transcriptional activity of terminal effector-specific super-enhancers in vivo. Consequentially, induced deletion of Brd4 or small molecule-mediated BET inhibition impaired maintenance of a terminal effector T cell phenotype. BRD4 was also required for terminal differentiation of CD8 T cells in the tumor microenvironment in murine models, which we show has implications for immunotherapies. Taken together, these data reveal an unappreciated requirement for BRD4 in coordinating activity of cis regulatory elements to control CD8 T cell fate and lineage stability.


Assuntos
Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/imunologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Viroses/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/patologia , Proteínas Nucleares/deficiência , Ligação Proteica , Interferência de RNA , Fatores de Transcrição/deficiência , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...