Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(4)2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38674366

RESUMO

Many investigations have evaluated the expression of noncoding RNAs (ncRNAs) as well as their related molecular functions and biological machineries in individuals with alcohol dependence. Alcohol dependence may be one of the most prevailing psychological disorders globally, and its pathogenesis is intricate and inadequately comprehended. There is substantial evidence indicating significant links between multiple genetic factors and the development of alcohol dependence. In particular, the critical roles of ncRNAs have been emphasized in the pathology of mental illnesses, probably including alcohol dependence. In the comprehension of the action of ncRNAs and their machineries of modification, furthermore, they have emerged as therapeutic targets for a variety of psychiatric illnesses, including alcohol dependence. It is worth mentioning that the dysregulated expression of ncRNAs has been regularly detected in individuals with alcohol dependence. An in-depth knowledge of the roles of ncRNAs and m6A modification may be valuable for the development of a novel treatment against alcohol dependence. In general, a more profound understanding of the practical roles of ncRNAs might make important contributions to the precise diagnosis and/or actual management of alcohol dependence. Here, in this review, we mostly focused on up-to-date knowledge regarding alterations and/or modifications in the expression of ncRNAs in individuals with alcohol dependence. Then, we present prospects for future research and therapeutic applications with a novel concept of the engram system.


Assuntos
Alcoolismo , Microbioma Gastrointestinal , RNA não Traduzido , Humanos , Alcoolismo/genética , Alcoolismo/microbiologia , Microbioma Gastrointestinal/genética , RNA não Traduzido/genética , Animais
2.
Discov Med ; 36(182): 457-466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531787

RESUMO

Chitosan seems to be an innovative biological material potentially utilized as a nanoparticle carrier for drug delivery, which could be low toxic, biocompatible, and easy to prepare. Chitosan nanoparticles have been employed in gene delivery. As a type of multifunctional adjuvant, chitosan nanoparticles could activate the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway to induce cell protection and/or proliferation via the modulation of autophagy within dendritic cells. In general, adjuvants may improve the innate and/or adaptive immune responses to a vaccine antigen by facilitating the antigen presentation of antigen presenting cells such as dendritic cells. The choice of a suitable adjuvant has become vital for improved safety and/or expanded application of vaccines. Fortunately, chitosan nanoparticles could be designed to target the dendritic cells to be enhanced by its adjuvant effect and for stimulating robust immune responses. Therefore, chitosan nanoparticles may be a good immune stimulant with encouraging properties for the development of superior vaccine delivery. Indeed, vaccines could play a key role in human health. In this review, we summarize the concept and/or recent progress in the field of chitosan nanoparticles, providing a valuable resource for investigating the molecular mechanisms of chitosan for the development of a greater vaccine.


Assuntos
Quitosana , Nanopartículas , Vacinas , Humanos , Fosfatidilinositol 3-Quinases , Adjuvantes Imunológicos
3.
Noncoding RNA ; 10(1)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38392966

RESUMO

Noncoding RNAs (ncRNAs), including circular RNAs (circRNAs) and N6-methyladenosine (m6A), have been shown to play a critical role in the development of various diseases including obesity and metabolic disorder-associated fatty liver disease (MAFLD). Obesity is a chronic disease caused by excessive fat accumulation in the body, which has recently become more prevalent and is the foremost risk factor for MAFLD. Causes of obesity may involve the interaction of genetic, behavioral, and social factors. m6A RNA methylation might add a novel inspiration for understanding the development of obesity and MAFLD with post-transcriptional regulation of gene expression. In particular, circRNAs, microRNAs (miRNAs), and m6A might be implicated in the progression of MAFLD. Interestingly, m6A modification can modulate the translation, degradation, and other functions of ncRNAs. miRNAs/circRNAs can also modulate m6A modifications by affecting writers, erasers, and readers. In turn, ncRNAs could modulate the expression of m6A regulators in different ways. However, there is limited evidence on how these ncRNAs and m6A interact to affect the promotion of liver diseases. It seems that m6A can occur in DNA, RNA, and proteins that may be associated with several biological properties. This study provides a mechanistic understanding of the association of m6A modification and ncRNAs with liver diseases, especially for MAFLD. Comprehension of the association between m6A modification and ncRNAs may contribute to the development of treatment tactics for MAFLD.

4.
Biomolecules ; 14(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38397444

RESUMO

Polycystic kidney disease (PKD) is the most common genetic form of chronic kidney disease (CKD), and it involves the development of multiple kidney cysts. Not enough medical breakthroughs have been made against PKD, a condition which features regional hypoxia and activation of the hypoxia-inducible factor (HIF) pathway. The following pathology of CKD can severely instigate kidney damage and/or renal failure. Significant evidence verifies an imperative role for mitophagy in normal kidney physiology and the pathology of CKD and/or PKD. Mitophagy serves as important component of mitochondrial quality control by removing impaired/dysfunctional mitochondria from the cell to warrant redox homeostasis and sustain cell viability. Interestingly, treatment with the peroxisome proliferator-activated receptor-α (PPAR-α) agonist could reduce the pathology of PDK and might improve the renal function of the disease via the modulation of mitophagy, as well as the condition of gut microbiome. Suitable modulation of mitophagy might be a favorable tactic for the prevention and/or treatment of kidney diseases such as PKD and CKD.


Assuntos
Doenças Renais Policísticas , Insuficiência Renal Crônica , Humanos , Mitofagia/genética , Doenças Renais Policísticas/terapia , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Hipóxia , Oxirredução
5.
Genes (Basel) ; 14(9)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37761875

RESUMO

Non-coding RNAs (ncRNAs) are indispensable for adjusting gene expression and genetic programming throughout development and for health as well as cardiovascular diseases. Cardiac arrhythmia is a frequent cardiovascular disease that has a complex pathology. Recent studies have shown that ncRNAs are also associated with cardiac arrhythmias. Many non-coding RNAs and/or genomes have been reported as genetic background for cardiac arrhythmias. In general, arrhythmias may be affected by several functional and structural changes in the myocardium of the heart. Therefore, ncRNAs might be indispensable regulators of gene expression in cardiomyocytes, which could play a dynamic role in regulating the stability of cardiac conduction and/or in the remodeling process. Although it remains almost unclear how ncRNAs regulate the expression of molecules for controlling cardiac conduction and/or the remodeling process, the gut microbiota and immune system within the intricate networks might be involved in the regulatory mechanisms. This study would discuss them and provide a research basis for ncRNA modulation, which might support the development of emerging innovative therapies against cardiac arrhythmias.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Arritmias Cardíacas/genética , Doença do Sistema de Condução Cardíaco , Miócitos Cardíacos , RNA não Traduzido/genética
6.
Explor Target Antitumor Ther ; 4(4): 556-568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720344

RESUMO

Hepatocellular carcinoma (HCC) constitutes an extremely malignant form of primary liver cancer. Intricate connections linking to the immune system might be associated with the pathogenesis of HCC. Meanwhile, immunotherapy with immune checkpoint inhibitors has been established to be a favorable therapeutic possibility for advanced HCC. Although curative opportunities for advanced HCC are restricted, the immune checkpoint immunotherapy has developed as the main choice for treating HCC. However, patients with metabolic-associated fatty liver disease (MAFLD)-linked HCC might be less likely to benefit from the immunotherapy alone. The limitation of the effect of the immunotherapy might be owing to the impaired T cell activation in MAFLD patients, which could be well explained by a dysfunctional gut-liver axis. Gut microbiota and their metabolites including several bile acids could contribute to modulating the responses of the immune checkpoint immunotherapy. Roles of gut microbiota in the development of cancers have expected great interest in the latest studies. Here, an interplay between the gut and liver has been presented, which might suggest to affect the efficacy of immune checkpoint immunotherapy against HCC.

7.
Neurol Int ; 15(3): 967-979, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37606395

RESUMO

Changes in epitranscriptome with N6-methyladenine (m6A) modification could be involved in the development of multiple diseases, which might be a prevalent modification of messenger RNAs (mRNAs) in eukaryotes. The m6A modification might be performed through the action of methyltransferases, demethylases, and methylation-binding proteins. Importantly, the m6A methylation may be associated with various neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), depression, aging-related diseases, and/or aging itself. In addition, the m6A methylation might functionally regulate the eukaryotic transcriptome by influencing the splicing, export, subcellular localization, translation, stability, and decay of mRNAs. Neurodegenerative diseases may possess a wide variety of phenotypes, depending on the neurons that degenerate on occasion. Interestingly, an increasing amount of evidence has indicated that m6A modification could modulate the expression of autophagy-related genes and promote autophagy in neuronal cells. Oxidative stresses such as reactive oxygen species (ROS) could stimulate the m6A RNA methylation, which may also be related to the regulation of autophagy and/or the development of neurodegenerative diseases. Both m6A modification and autophagy could also play critical roles in regulating the health condition of neurons. Therefore, a comprehensive understanding of the m6A and autophagy relationship in human diseases may benefit in developing therapeutic strategies in the future. This paper reviews advances in the understanding of the regulatory mechanisms of m6A modification in the occurrence and development of neurodegenerative diseases and/or aging, discussing the possible therapeutic procedures related to mechanisms of m6A RNA methylation and autophagy.

8.
Explor Target Antitumor Ther ; 4(3): 460-473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455830

RESUMO

Immunotherapy strategies targeting immune checkpoint molecules such as programmed cell death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) are revolutionizing oncology. However, its effectiveness is limited in part due to the loss of effector cytotoxic T lymphocytes. Interestingly, supplementation of vitamin D could abolish the repressive effect of programmed cell death-ligand 1 (PD-L1) on CD8+ T cells, which might prevent the lymphocytopenia. In addition, vitamin D signaling could contribute to the differentiation of T-regulatory (Treg) cells associated with the expression of Treg markers such as forkhead box P3 (FOXP3) and CTLA-4. Furthermore, vitamin D may be associated with the stimulation of innate immunity. Peroxisome proliferator-activated receptor (PPAR) and estrogen receptor (ESR) signaling, and even the signaling from phosphoinositide-3 kinase (PI3K)/AKT pathway could have inhibitory roles in carcinogenesis possibly via the modulation of immune checkpoint molecules. In some cases, certain small molecules including vitamin D could be a novel therapeutic modality with a promising potential for the better performance of immune checkpoint blockade cancer therapies.

9.
Noncoding RNA ; 9(2)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37104005

RESUMO

Circular RNAs (circRNAs), a newly recognized group of noncoding RNA transcripts, have established widespread attention due to their regulatory role in cell signaling. They are covalently closed noncoding RNAs that form a loop, and are typically generated during the splicing of precursor RNAs. CircRNAs are key post-transcriptional and post-translational regulators of gene expression programs that might influence cellular response and/or function. In particular, circRNAs have been considered to function as sponges of specific miRNA, regulating cellular processes at the post-transcription stage. Accumulating evidence has shown that the aberrant expression of circRNAs could play a key role in the pathogenesis of several diseases. Notably, circRNAs, microRNAs, and several RNA-binding proteins, including the antiproliferative (APRO) family proteins, could be indispensable gene modulators, which might be strongly linked to the occurrence of diseases. In addition, circRNAs have attracted general interest for their stability, abundance in the brain, and their capability to cross the blood-brain barrier. Here, we present the current findings and theragnostic potentials of circRNAs in several diseases. With this, we aim to provide new insights to support the development of novel diagnostic and/or therapeutic strategies for these diseases.

10.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982539

RESUMO

Mitophagy/autophagy plays a protective role in various forms of liver damage, by renovating cellular metabolism linking to sustain liver homeostasis. A characterized pathway for mitophagy is the phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)/Parkin-dependent signaling pathway. In particular, PINK1-mediated mitophagy could play an indispensable role in improving the metabolic dysfunction-associated fatty liver disease (MAFLD) which could precede to steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma. In addition, the PI3K/AKT/mTOR pathway might regulate the various characteristics of cellular homeostasis including energy metabolism, cell proliferation, and/or cell protection. Therefore, targeting mitophagy with the alteration of PI3K/AKT/mTOR or PINK1/Parkin-dependent signaling to eliminate impaired mitochondria might be an attractive strategy for the treatment of MAFLD. In particular, the efficacy of prebiotics for the treatment of MAFLD has been suggested to be useful via the modulation of the PI3K/AKT/mTOR/AMPK pathway. Additionally, several edible phytochemicals could activate mitophagy for the improvement of mitochondrial damages, which could also be a promising option to treat MAFLD with providing liver protection. Here, the potential therapeutics with several phytochemicals has been discussed for the treatment of MAFLD. Tactics with a viewpoint of prospective probiotics might contribute to the development of therapeutic interventions.


Assuntos
Mitofagia , Hepatopatia Gordurosa não Alcoólica , Humanos , Mitofagia/fisiologia , Prebióticos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR , Ubiquitina-Proteína Ligases/metabolismo
11.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982811

RESUMO

The tryptophan and kynurenine pathway is well-known to play an important role in nervous, endocrine, and immune systems, as well as in the development of inflammatory diseases. It has been documented that some kynurenine metabolites are considered to have anti-oxidative, anti-inflammatory, and/or neuroprotective properties. Importantly, many of these kynurenine metabolites may possess immune-regulatory properties that could alleviate the inflammation response. The abnormal activation of the tryptophan and kynurenine pathway might be involved in the pathophysiological process of various immune-related diseases, such as inflammatory bowel disease, cardiovascular disease, osteoporosis, and/or polycystic ovary syndrome. Interestingly, kynurenine metabolites may be involved in the brain memory system and/or intricate immunity via the modulation of glial function. In the further deliberation of this concept with engram, the roles of gut microbiota could lead to the development of remarkable treatments for the prevention of and/or the therapeutics for various intractable immune-related diseases.


Assuntos
Microbioma Gastrointestinal , Doenças do Sistema Imunitário , Feminino , Humanos , Triptofano/metabolismo , Cinurenina/metabolismo , Encéfalo/metabolismo , Doenças do Sistema Imunitário/metabolismo
12.
Diseases ; 10(4)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36547203

RESUMO

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease, the pathogenesis of which is based on alternations in the mitochondria of motor neurons, causing their progressive death. A growing body of evidence shows that more efficient mitophagy could prevent and/or treat this disorder by suppressing mitochondrial dysfunction-induced oxidative stress and inflammation. Mitophagy has been considered one of the main mechanisms responsible for mitochondrial quality control. Since ALS is characterized by enormous oxidative stress, several edible phytochemicals that can activate mitophagy to remove damaged mitochondria could be considered a promising option to treat ALS by providing neuroprotection. Therefore, it is of great significance to explore the mechanisms of mitophagy in ALS and to understand the effects and/or molecular mechanisms of phytochemical action, which could translate into a treatment for neurodegenerative diseases, including ALS.

13.
Metabolites ; 12(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36355135

RESUMO

Nerve cell death accounts for various neurodegenerative disorders, in which altered immunity to the integrated central nervous system (CNS) might have destructive consequences. This undesirable immune response often affects the progressive neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, schizophrenia and/or amyotrophic lateral sclerosis (ALS). It has been shown that commensal gut microbiota could influence the brain and/or several machineries of immune function. In other words, neurodegenerative disorders may be connected to the gut-brain-immune correlational system. The engrams in the brain could retain the information of a certain inflammation in the body which might be involved in the pathogenesis of neurodegenerative disorders. Tactics involving the use of probiotics and/or fecal microbiota transplantation (FMT) are now evolving as the most promising and/or valuable for the modification of the gut-brain-immune axis. More deliberation of this concept and the roles of gut microbiota would lead to the development of stupendous treatments for the prevention of, and/or therapeutics for, various intractable diseases including several neurodegenerative disorders.

14.
Cancers (Basel) ; 14(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36230852

RESUMO

The APRO family members may be involved in the regulation of cell growth, migration, and/or invasion. Although an APRO protein could suppress the invasiveness of several cancer cells, it has been reported that overexpression of the same APRO protein could also promote the invasiveness and/or metastasis of the same cancer cells. In general, the invasiveness of cancer cells might be associated with the function of matrix metalloproteinases (MMPs) as well as with the function of certain exosomes. However, it has been shown that exosomes involving particular APRO proteins, MMPs, and/or microRNA could contribute to the regulation of invasiveness. Here, we discuss contradictory reports on invasiveness in relation to APRO family proteins on the basis of understanding the function of MMPs and/or various exosomes. A better understanding of those mechanisms could be of use to bring about innovative strategies for cancer treatment.

15.
Explor Target Antitumor Ther ; 3(6): 817-827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36654824

RESUMO

Among the malignant tumors in the central nervous system (CNS), glioma is the most challenging tumor to the public society, which accounts for the majority of intracranial malignant tumors with impaired brain function. In general, conventional therapies are still unable to provide an effective cure. However, novel immunotherapies have changed the treatment scene giving patients a greater potential to attain long term survival, improved quality of life. Having shown favorable results in solid tumors, those therapies are now at a cancer research hotspot, which could even shrink the growth of glioma cells without causing severe complications. However, it is important to recognize that the therapy may be occasionally associated with noteworthy adverse action called immune-related adverse events (IRAEs) which have emerged as a potential limitation of the therapy. Multiple classes of mediators have been developed to enhance the ability of immune system to target malignant tumors including glioma but may also be associated with the IRAEs. In addition, it is probable that it would take long time after the therapy to exhibit severe immune-related disorders. Gut microbiota could play an integral role in optimal immune development and/or appropriate function for the cancer therapy, which is a vital component of the multidirectional communication between immune system, brain, and gut, also known as gut-brain-immune axis. Here, we show the potential effects of the gut-brain-immune axis based on an "engram theory" for the innovative treatment of IRAEs.

16.
Biomolecules ; 13(1)2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36671395

RESUMO

The PI3K/AKT/mTOR signaling pathway may play crucial roles in the pathogenesis of obesity and diabetes mellitus, as well as metabolic syndromes, which could also be risk factors for cardio-metabolic disorders. Consistently, it has been shown that beneficial effects may be convoyed by the modulation of the PI3K/AKT/mTOR pathway against the development of these diseases. Importantly, the PI3K/AKT/mTOR signaling pathway can be modulated by probiotics. Probiotics have a variety of beneficial properties, with the potential of treating specific diseases such as immune-related diseases, which are valuable to human health. In addition, an increasing body of work in the literature emphasized the contribution of genetically modified probiotics. There now seems to be a turning point in the research of probiotics. A better understanding of the interactions between microbiota, lifestyle, and host factors such as genetics and/or epigenetics might lead to a novel therapeutic approach with probiotics for these diseases. This study might provide a theoretical reference for the development of genetically modified probiotics in health products and/or in functional foods for the treatment of cardio-metabolic disorders.


Assuntos
Doenças Metabólicas , Probióticos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Probióticos/uso terapêutico , Doenças Metabólicas/genética , Doenças Metabólicas/prevenção & controle , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...