Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pac Symp Biocomput ; 29: 65-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160270

RESUMO

Topological data analysis (TDA) combined with machine learning (ML) algorithms is a powerful approach for investigating complex brain interaction patterns in neurological disorders such as epilepsy. However, the use of ML algorithms and TDA for analysis of aberrant brain interactions requires substantial domain knowledge in computing as well as pure mathematics. To lower the threshold for clinical and computational neuroscience researchers to effectively use ML algorithms together with TDA to study neurological disorders, we introduce an integrated web platform called MaTiLDA. MaTiLDA is the first tool that enables users to intuitively use TDA methods together with ML models to characterize interaction patterns derived from neurophysiological signal data such as electroencephalogram (EEG) recorded during routine clinical practice. MaTiLDA features support for TDA methods, such as persistent homology, that enable classification of signal data using ML models to provide insights into complex brain interaction patterns in neurological disorders. We demonstrate the practical use of MaTiLDA by analyzing high-resolution intracranial EEG from refractory epilepsy patients to characterize the distinct phases of seizure propagation to different brain regions. The MaTiLDA platform is available at: https://bmhinformatics.case.edu/nicworkflow/MaTiLDA.


Assuntos
Epilepsia , Processamento de Sinais Assistido por Computador , Humanos , Biologia Computacional , Encéfalo , Aprendizado de Máquina , Análise de Dados
2.
bioRxiv ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37398372

RESUMO

Non-negative Matrix Factorization (NME) is an algorithm that can reduce high dimensional datasets of tens of thousands of genes to a handful of metagenes which are biologically easier to interpret. Application of NMF on gene expression data has been limited by its computationally intensive nature, which hinders its use on large datasets such as single-cell RNA sequencing (scRNA-seq) count matrices. We have implemented NMF based clustering to run on high performance GPU compute nodes using Cupy, a GPU backed python library, and the Message Passing Interface (MPI). This reduces the computation time by up to three orders of magnitude and makes the NMF Clustering analysis of large RNA-Seq and scRNA-seq datasets practical. We have made the method freely available through the GenePatten gateway, which provides free public access to hundreds of tools for the analysis and visualization of multiple 'omic data types. Its web-based interface gives easy access to these tools and allows the creation of multi-step analysis pipelnes on high performance computing (HPC) culsters that enable reproducible in silco research for non-programmers.

3.
J Bioinform Syst Biol ; 6(4): 379-383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38390437

RESUMO

Non-negative Matrix Factorization (NMF) is an algorithm that can reduce high dimensional datasets of tens of thousands of genes to a handful of metagenes which are biologically easier to interpret. Application of NMF on gene expression data has been limited by its computationally intensive nature, which hinders its use on large datasets such as single-cell RNA sequencing (scRNA-seq) count matrices. We have implemented NMF based clustering to run on high performance GPU compute nodes using CuPy, a GPU backed python library, and the Message Passing Interface (MPI). This reduces the computation time by up to three orders of magnitude and makes the NMF Clustering analysis of large RNA-Seq and scRNA-seq datasets practical. We have made the method freely available through the GenePattern gateway, which provides free public access to hundreds of tools for the analysis and visualization of multiple 'omic data types. Its web-based interface gives easy access to these tools and allows the creation of multi-step analysis pipelines on high performance computing (HPC) clusters that enable reproducible in silico research for non-programmers.

4.
Database (Oxford) ; 20222022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367313

RESUMO

To preserve scientific data created by publicly and/or philanthropically funded research projects and to make it ready for exploitation using recent and ongoing advances in advanced and large-scale computational modeling methods, publicly available data must use in common, now-evolving standards for formatting, identifying and annotating should share data. The OpenNeuro.org archive, built first as a repository for magnetic resonance imaging data based on the Brain Imaging Data Structure formatting standards, aims to house and share all types of human neuroimaging data. Here, we present NEMAR.org, a web gateway to OpenNeuro data for human neuroelectromagnetic data. NEMAR allows users to search through, visually explore and assess the quality of shared electroencephalography (EEG), magnetoencephalography and intracranial EEG data and then to directly process selected data using high-performance computing resources of the San Diego Supercomputer Center via the Neuroscience Gateway (nsgportal.org, NSG), a freely available web portal to high-performance computing serving a variety of neuroscientific analysis environments and tools. Combined, OpenNeuro, NEMAR and NSG form an efficient, integrated data, tools and compute resource for human neuroimaging data analysis and meta-analysis. Database URL: https://nemar.org.


Assuntos
Acesso à Informação , Neurociências , Humanos , Bases de Dados Factuais , Imageamento por Ressonância Magnética , Neurociências/métodos
5.
Neuroimage ; 224: 116778, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32289453

RESUMO

EEGLAB signal processing environment is currently the leading open-source software for processing electroencephalographic (EEG) data. The Neuroscience Gateway (NSG, nsgportal.org) is a web and API-based portal allowing users to easily run a variety of neuroscience-related software on high-performance computing (HPC) resources in the U.S. XSEDE network. We have reported recently (Delorme et al., 2019) on the Open EEGLAB Portal expansion of the free NSG services to allow the neuroscience community to build and run MATLAB pipelines using the EEGLAB tool environment. We are now releasing an EEGLAB plug-in, nsgportal, that interfaces EEGLAB with NSG directly from within EEGLAB running on MATLAB on any personal lab computer. The plug-in features a flexible MATLAB graphical user interface (GUI) that allows users to easily submit, interact with, and manage NSG jobs, and to retrieve and examine their results. Command line nsgportal tools supporting these GUI functionalities allow EEGLAB users and plug-in tool developers to build largely automated functions and workflows that include optional NSG job submission and processing. Here we present details on nsgportal implementation and documentation, provide user tutorials on example applications, and show sample test results comparing computation times using HPC versus laptop processing.


Assuntos
Eletroencefalografia , Neurociências , Software , Interface Usuário-Computador , Algoritmos , Eletroencefalografia/métodos , Processamento Eletrônico de Dados , Humanos
6.
Concurr Comput ; 27(2): 473-488, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26523124

RESUMO

The last few decades have seen the emergence of computational neuroscience as a mature field where researchers are interested in modeling complex and large neuronal systems and require access to high performance computing machines and associated cyber infrastructure to manage computational workflow and data. The neuronal simulation tools, used in this research field, are also implemented for parallel computers and suitable for high performance computing machines. But using these tools on complex high performance computing machines remains a challenge because of issues with acquiring computer time on these machines located at national supercomputer centers, dealing with complex user interface of these machines, dealing with data management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of view of the users, all the administrative and technical barriers and makes parallel neuronal simulation tools easily available and accessible on complex high performance computing machines. It handles the running of jobs and data management and retrieval. This paper shares the early experiences in bringing up this gateway and describes the software architecture it is based on, how it is implemented, and how users can use this for computational neuroscience research using high performance computing at the back end. We also look at parallel scaling of some publicly available neuronal models and analyze the recent usage data of the neuroscience gateway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...