Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39095584

RESUMO

Identifying the mechanisms of action of anticancer drugs is an important step in the development of new drugs. In this study, we established a comprehensive screening platform consisting of 68 oncogenes (MANO panel), encompassing 243 genetic variants, to identify predictive markers for drug efficacy. Validation was performed using drugs that targeted EGFR, BRAF, and MAP2K1, which confirmed the utility of this functional screening panel. Screening of a BRCA2-knockout DLD1 cell line (DLD1-KO) revealed that cells expressing SMO and GLI1 were resistant to olaparib. Gene set enrichment analysis identified genes associated with DNA damage repair that were enriched in cells overexpressing SMO and GLI1. The expression of genes associated with homologous recombination repair (HR), such as the FANC family and BRCA1/2, was significantly upregulated by GLI1 expression, which is indicative of PARP inhibitor resistance. Although not all representative genes of the nucleotide excision repair (NER) pathway were upregulated, NER activity was enhanced by GLI1. The GLI1 inhibitor was effective against DLD1-KO cells overexpressing GLI1 both in vitro and in vivo. Furthermore, the combination therapy of olaparib and GLI1 inhibitor exhibited a synergistic effect on DLD1-KO, suggesting the possible clinical application of GLI1 inhibitor targeting cancer with defective DNA damage repair. This platform enables the identification of biomarkers associated with drug sensitivity, and is a useful tool for drug development.

2.
NPJ Precis Oncol ; 8(1): 117, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789724

RESUMO

E7820 and Indisulam (E7070) are sulfonamide molecular glues that modulate RNA splicing by degrading the splicing factor RBM39 via ternary complex formation with the E3 ligase adaptor DCAF15. To identify biomarkers of the antitumor efficacy of E7820, we treated patient-derived xenograft (PDX) mouse models established from 42 patients with solid tumors. The overall response rate was 38.1% (16 PDXs), and tumor regression was observed across various tumor types. Exome sequencing of the PDX genome revealed that loss-of-function mutations in genes of the homologous recombination repair (HRR) system, such as ATM, were significantly enriched in tumors that responded to E7820 (p = 4.5 × 103). Interestingly, E7820-mediated double-strand breaks in DNA were increased in tumors with BRCA2 dysfunction, and knockdown of BRCA1/2 transcripts or knockout of ATM, ATR, or BAP1 sensitized cancer cells to E7820. Transcriptomic analyses revealed that E7820 treatment resulted in the intron retention of mRNAs and decreased transcription, especially for HRR genes. This induced HRR malfunction probably leads to the synthetic lethality of tumor cells with homologous recombination deficiency (HRD). Furthermore, E7820, in combination with olaparib, exerted a synergistic effect, and E7820 was even effective in an olaparib-resistant cell line. In conclusion, HRD is a promising predictive biomarker of E7820 efficacy and has a high potential to improve the prognosis of patients with HRD-positive cancers.

3.
Heliyon ; 10(6): e28044, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545229

RESUMO

γ-Ray irradiation induces DNA double strand breaks (DSBs) and increases the risk of cancerization. Irradiated cells usually repair DSBs directly, but accumulate replication stress-associated DSBs, increasing the risk of structural variants (SVs). Although single nucleotide variants (SNVs) are also induced, it is still unclear which SNVs are induced by γ-ray irradiation. Here, we show that single base substitution (SBS) 17a, 17b, and 40 signatures were induced by γ-ray irradiation, which is mainly SNV induction in A-T bps. While SNVs induced by genomic instability were usually associated with SVs, SNVs induced by γ-ray irradiation and the associated signatures were not. As reactive oxygen species (ROS) are a possible cause of SBS17a and 17b, ROS were induced upon γ-ray irradiation (1-8 Gy), indicating the association of ROS for the SNV induction. Thus, our results reveal that ROS-associated SNVs are increased by irradiation, and that ROS-associated SNVs are induced independently of SVs.

4.
PLoS One ; 18(1): e0281168, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36706121

RESUMO

Malignancy is often associated with therapeutic resistance and metastasis, usually arising after therapeutic treatment. These include radio- and chemo-therapies, which cause cancer cell death by inducing DNA double strand breaks (DSBs). However, it is still unclear how resistance to these DSBs is induced and whether it can be suppressed. Here, we show that DSBs induced by camptothecin (CPT) and radiation jeopardize genome stability in surviving cancer cells, ultimately leading to the development of resistance. Further, we show that cytosolic DNA, accumulating as a consequence of genomic destabilization, leads to increased cGAS/STING-pathway activation and, ultimately, increased cell migration, a precursor of metastasis. Interestingly, these genomic destabilization-associated phenotypes were suppressed by the PARP inhibitor Olaparib. Recognition of DSBs by Rad51 and genomic destabilization were largely reduced by Olaparib, while the DNA damage response and cancer cell death were effectively increased. Thus, Olaparib decreases the risk of therapeutic resistance and cell migration of cells that survive radio- and CPT-treatments.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Linhagem Celular Tumoral , DNA , Quebras de DNA de Cadeia Dupla , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fenótipo , Ftalazinas/farmacologia , Genoma
5.
Sci Rep ; 12(1): 20964, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470958

RESUMO

Generally, the number of single-nucleotide variants (SNVs) in somatic cells increases with age, which is expected for replication errors. The number of SNVs in cancer cells, however, is often much higher than that in somatic cells, raising the question of whether cancer cells possess SNV induction pathways. The present study shows that the number of SNVs in cancer cells correlates with the number of chromosomal structural variants (SVs). While Kataegis, localized hypermutations typically arising near SV sites, revealed multiple SNVs within 1 kb, SV-associated SNVs were generally observed within 0.1-1 Mb of SV sites, irrespective of Kataegis status. SNVs enriched within 1 Mb of SV regions were associated with deficiency of DNA damage repair, including HR deficiency-associated single base substitution 3 (SBS3) and exogenous damage-associated SBS7 and SBS36 signatures. We also observed a similar correlation between SVs and SNVs in cells that had undergone clonal evolution in association with genomic instability, implying an association between genomic instability and SV-associated induction of SNVs.


Assuntos
Neoplasias , Nucleotídeos , Humanos , Nucleotídeos/genética , Evolução Clonal , Instabilidade Genômica , Polimorfismo de Nucleotídeo Único , Neoplasias/genética
6.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830134

RESUMO

Many cancers develop as a consequence of genomic instability, which induces genomic rearrangements and nucleotide mutations. Failure to correct DNA damage in DNA repair defective cells, such as in BRCA1 and BRCA2 mutated backgrounds, is directly associated with increased cancer risk. Genomic rearrangement is generally a consequence of erroneous repair of DNA double-strand breaks (DSBs), though paradoxically, many cancers develop in the absence of DNA repair defects. DNA repair systems are essential for cell survival, and in cancers deficient in one repair pathway, other pathways can become upregulated. In this review, we examine the current literature on genomic alterations in cancer cells and the association between these alterations and DNA repair pathway inactivation and upregulation.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Instabilidade Genômica , Neoplasias/genética , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Humanos , Neoplasias/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Fatores de Risco , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
7.
iScience ; 24(4): 102313, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33870130

RESUMO

Exposure to ionizing radiation is associated with cancer risk. Although multiple types of DNA damage are caused by radiation, it remains unknown how this damage is associated with cancer risk. Here, we show that after repair of double-strand breaks (DSBs) directly caused by radiation (dir-DSBs), irradiated cells enter a state at higher risk of genomic destabilization due to accumulation of replication-stress-associated DSBs (rs-DSBs), ultimately resulting in clonal evolution of cells with abrogated defense systems. These effects were observed over broad ranges of radiation doses (0.25-2 Gy) and dose rates (1.39-909 mGy/min), but not upon high-dose irradiation, which caused permanent cell-cycle arrest. The resultant genomic destabilization also increased the risk of induction of single-nucleotide variants (SNVs), including radiation-associated SNVs, as well as structural alterations in chromosomes. Thus, the radiation-associated risk can be attributed to rs-DSB accumulation and resultant genomic destabilization.

8.
Cancer Sci ; 112(2): 515-522, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33222327

RESUMO

Cancer develops through multiple rounds of clonal evolution of cells with abrogated defense systems. Such clonal evolution is triggered by genomic destabilization with associated mutagenesis. However, what increases the risk of genomic destabilization remains unclear. Genomic instability is usually the result of erroneous repair of DNA double-strand breaks (DSB); paradoxically, however, most cancers develop with genomic instability but lack mutations in DNA repair systems. In this manuscript, we review current knowledge regarding a cellular state that increases the risk of genomic destabilization, in which cells exhibit phenotypes often observed during senescence. In addition, we explore the pathways that lead to genomic destabilization and its associated mutagenesis, which ultimately result in cancer.


Assuntos
Senescência Celular/genética , Instabilidade Genômica/genética , Mutagênese/genética , Neoplasias/genética , Animais , Humanos , Fenótipo
9.
Sci Rep ; 10(1): 5388, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214146

RESUMO

Genomic destabilisation is associated with the induction of mutations, including those in cancer-driver genes, and subsequent clonal evolution of cells with abrogated defence systems. Such mutations are not induced when genome stability is maintained; however, the mechanisms involved in genome stability maintenance remain elusive. Here, resveratrol (and related polyphenols) is shown to enhance genome stability in mouse embryonic fibroblasts, ultimately protecting the cells against the induction of mutations in the ARF/p53 pathway. Replication stress-associated DNA double-strand breaks (DSBs) that accumulated with genomic destabilisation were effectively reduced by resveratrol treatment. In addition, resveratrol transiently stabilised the expression of histone H2AX, which is involved in DSB repair. Similar effects on the maintenance of genome stability were observed for related polyphenols. Accordingly, we propose that polyphenol consumption can contribute to the suppression of cancers that develop with genomic instability, as well as lifespan extension.


Assuntos
Instabilidade Genômica/efeitos dos fármacos , Resveratrol/farmacologia , Animais , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Mutação , Polifenóis/metabolismo , Polifenóis/farmacologia , Resveratrol/metabolismo
10.
Cancers (Basel) ; 11(11)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653100

RESUMO

The development of cancer is driven by genomic instability and mutations. In general, cancer develops via multiple steps. Each step involves the clonal evolution of cells with abrogated defense systems, such as cells with mutations in cancer-suppressor genes. However, it remains unclear how cellular defense systems are abrogated and the associated clonal evolution is triggered and propagated. In this manuscript, we review current knowledge regarding mutagenesis associated with genomic destabilization and its relationship with the clonal evolution of cells over the course of cancer development, focusing especially on mechanistic aspects.

11.
Nat Commun ; 10(1): 3925, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477700

RESUMO

Mismatch repair (MMR)-deficient cancers are characterized by microsatellite instability (MSI) and hypermutation. However, it remains unclear how MSI and hypermutation arise and contribute to cancer development. Here, we show that MSI and hypermutation are triggered by replication stress in an MMR-deficient background, enabling clonal expansion of cells harboring ARF/p53-module mutations and cells that are resistant to the anti-cancer drug camptothecin. While replication stress-associated DNA double-strand breaks (DSBs) caused chromosomal instability (CIN) in an MMR-proficient background, they induced MSI with concomitant suppression of CIN via a PARP-mediated repair pathway in an MMR-deficient background. This was associated with the induction of mutations, including cancer-driver mutations in the ARF/p53 module, via chromosomal deletions and base substitutions. Immortalization of MMR-deficient mouse embryonic fibroblasts (MEFs) in association with ARF/p53-module mutations was ~60-fold more efficient than that of wild-type MEFs. Thus, replication stress-triggered MSI and hypermutation efficiently lead to clonal expansion of cells with abrogated defense systems.


Assuntos
Proliferação de Células/genética , Replicação do DNA/genética , Fibroblastos/metabolismo , Instabilidade de Microssatélites , Mutação , Animais , Células Cultivadas , Instabilidade Cromossômica , Quebras de DNA de Cadeia Dupla , Reparo de Erro de Pareamento de DNA/genética , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Células HCT116 , Células HeLa , Humanos , Camundongos Knockout
12.
Semin Cancer Biol ; 58: 29-46, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30922960

RESUMO

Cancer cells show various types of mutations and aberrant expression in genes involved in DNA repair responses. These alterations induce genome instability and promote carcinogenesis steps and cancer progression processes. These defects in DNA repair have also been considered as suitable targets for cancer therapies. A most effective target so far clinically demonstrated is "homologous recombination repair defect", such as BRCA1/2 mutations, shown to cause synthetic lethality with inhibitors of poly(ADP-ribose) polymerase (PARP), which in turn is involved in DNA repair as well as multiple physiological processes. Different approaches targeting genomic instability, including immune therapy targeting mismatch-repair deficiency, have also recently been demonstrated to be promising strategies. In these DNA repair targeting-strategies, common issues could be how to optimize treatment and suppress/conquer the development of drug resistance. In this article, we review the extending framework of DNA repair response pathways and the potential impact of exploiting those defects on cancer treatments, including chemotherapy, radiation therapy and immune therapy.


Assuntos
Reparo do DNA/genética , Neoplasias/genética , Animais , Carcinogênese/genética , Instabilidade Genômica/genética , Humanos , Mutação/genética
13.
Heliyon ; 5(12): e03057, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32083205

RESUMO

Most cancers develop with one of two types of genomic instability, namely, chromosomal instability (CIN) or microsatellite instability (MSI). Both are induced by replication stress-associated DNA double-strand breaks (DSBs). The type of genomic instability that arises is dependent on the choice of DNA repair pathway. Specifically, MSI is induced via a PolQ-dependent repair pathway called microhomology-mediated end joining (MMEJ) in a mismatch repair (MMR)-deficient background. However, it is unclear how the MMR status determines the choice of DSB repair pathway. Here, we show that replication stress-associated DSBs initially targeted by the homologous recombination (HR) system were subsequently hijacked by PolQ-dependent MMEJ in MMR-deficient cells, but persisted as HR intermediates in MMR-proficient cells. PolQ interacting with MMR factors was effectively loaded onto damaged chromatin in an MMR-deficient background, in which merged MRE11/γH2AX foci also effectively formed. Thus, the choice of DNA repair pathway according to the MMR status determines whether CIN or MSI is induced.

14.
Biochem Biophys Rep ; 16: 115-121, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30417129

RESUMO

Deamination of 5-methyl cytosine is a major cause of cancer-driver mutations in inflammation-associated cancers. The deaminase APOBEC3B is expressed in these cancers and causes mutations under replication stress; however, the mechanisms by which APOBEC3B mediates deamination and its association with genomic disorders are still unclear. Here, we show that APOBEC3B is stabilized to induce deamination reaction in response to DNA double-strand breaks (DSBs), resulting in the formation of long-lasting DSBs. Uracil, the major deamination product, is subsequently targeted by base excision repair (BER) through uracil-DNA glycosylase 2 (UNG2); hence late-onset DSBs arise as by-products of BER. The frequency of these delayed DSBs was increased by treatment of cells with a PARP inhibitor, and was suppressed following knock-down of UNG2. The late-onset DSBs were induced in an ATR-dependent manner. Those secondary DSBs were persistent, unlike DSBs directly caused by γ-ray irradiation. Overall, these results suggest that the deaminase APOBEC3B is induced in response to DSBs, leading to long-lasting DSB formation in addition to mutagenic 5me-C>T transition induction.

15.
Cancers (Basel) ; 10(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274183

RESUMO

Radiation and certain anticancer drugs damage DNA, resulting in apoptosis induction in cancer cells. Currently, the major limitations on the efficacy of such therapies are development of resistance and adverse side effects. Sensitization is an important strategy for increasing therapeutic efficacy while minimizing adverse effects. In this manuscript, we review possible sensitization strategies for radiation and anticancer drugs that cause DNA damage, focusing especially on modulation of damage repair pathways and the associated reactions.

16.
Genes Cells ; 21(7): 789-97, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27251002

RESUMO

H2AX is expressed at very low levels in quiescent normal cells in vivo and in vitro. Such cells repair DNA double-strand breaks (DSBs) induced by γ-irradiation through a transient stabilization of H2AX. However, the resultant cells accumulate small numbers of irreparable (or persistent) DSBs via an unknown mechanism. We found that quiescent cells that had repaired DSBs directly induced by γ-rays were prone to accumulate DSBs during the subsequent DNA replication. Unlike directly induced DSBs, secondary DSBs were not efficiently repaired, although Rad51 and 53BP1 were recruited to these sites. H2AX was dramatically stabilized in response to DSBs directly caused by γ-rays, enabling γH2AX foci formation and DSB repair, whereas H2AX was barely stabilized in response to secondary DSBs, in which γH2AX foci were small and DSBs were not efficiently repaired. Our results show a pathway that leads to the persistent DSB formation after γ-irradiation.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Replicação do DNA/genética , Histonas/genética , Rad51 Recombinase/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Células 3T3 , Animais , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , Fibroblastos , Raios gama , Regulação da Expressão Gênica/efeitos da radiação , Histonas/biossíntese , Humanos , Camundongos , Rad51 Recombinase/biossíntese , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/biossíntese
17.
Cell Rep ; 13(12): 2728-40, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26711340

RESUMO

In response to DNA double-strand breaks (DSBs), H2AX is rapidly phosphorylated at Ser139 to promote DSB repair. Here we show that H2AX is rapidly stabilized in response to DSBs to efficiently generate γH2AX foci. This mechanism operated even in quiescent cells that barely expressed H2AX. H2AX stabilization resulted from the inhibition of proteasome-mediated degradation. Synthesized H2AX ordinarily underwent degradation through poly-ubiquitination mediated by the E3 ligase HUWE1; however, H2AX ubiquitination was transiently halted upon DSB formation. Such rapid H2AX stabilization by DSBs was associated with chromatin incorporation of H2AX and halting of its poly-ubiquitination mediated by the ATM kinase, the sirtuin protein SIRT6, and the chromatin remodeler SNF2H. H2AX Ser139, the ATM phosphorylation site, was essential for H2AX stabilization upon DSB formation. Our results reveal a pathway controlled by ATM, SIRT6, and SNF2H to block HUWE1, which stabilizes H2AX and induces its incorporation into chromatin only when cells are damaged.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Sirtuínas/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Animais , Quebras de DNA de Cadeia Dupla , Células HeLa , Histonas/genética , Humanos , Camundongos , Fosforilação , Sirtuínas/genética , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases/metabolismo
18.
World J Stem Cells ; 7(2): 483-9, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25815132

RESUMO

Cancers that develop after middle age usually exhibit genomic instability and multiple mutations. This is in direct contrast to pediatric tumors that usually develop as a result of specific chromosomal translocations and epigenetic aberrations. The development of genomic instability is associated with mutations that contribute to cellular immortalization and transformation. Cancer occurs when cancer-initiating cells (CICs), also called cancer stem cells, develop as a result of these mutations. In this paper, we explore how CICs develop as a result of genomic instability, including looking at which cancer suppression mechanisms are abrogated. A recent in vitro study revealed the existence of a CIC induction pathway in differentiating stem cells. Under aberrant differentiation conditions, cells become senescent and develop genomic instabilities that lead to the development of CICs. The resulting CICs contain a mutation in the alternative reading frame of CDKN2A (ARF)/p53 module, i.e., in either ARF or p53. We summarize recently established knowledge of CIC development and cellular immortality, explore the role of the ARF/p53 module in protecting cells from transformation, and describe a risk factor for genomic destabilization that increases during the process of normal cell growth and differentiation and is associated with the downregulation of histone H2AX to levels representative of growth arrest in normal cells.

19.
J Biol Chem ; 288(19): 13269-77, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23536184

RESUMO

BACKGROUND: It is unclear how DNA-damaging agents target cancer cells over normal somatic cells. RESULTS: Arf/p53-dependent down-regulation of H2AX enables normal cells to survive after DNA damage. CONCLUSION: Transformed cells, which harbor mutations in either Arf or p53, are more sensitive to DNA-damaging agents. SIGNIFICANCE: Cellular transformation renders cells more susceptible to some DNA-damaging agents. Anti-cancer drugs generally target cancer cells rather than normal somatic cells. However, the factors that determine this differential sensitivity are poorly understood. Here we show that Arf/p53-dependent down-regulation of H2AX induced the selective survival of normal cells after drug treatment, resulting in the preferential targeting of cancer cells. Treatment with camptothecin, a topoisomerase I inhibitor, caused normal cells to down-regulate H2AX and become quiescent, a process mediated by both Arf and p53. In contrast, transformed cells that harbor mutations in either Arf or p53 do not down-regulate H2AX and are more sensitive to drugs unless they have developed drug resistance. Such transformation-associated changes in H2AX expression rendered cancer cells more susceptible to drug-induced damage (by two orders of magnitude). Thus, the expression of H2AX and γH2AX (phosphorylated form of H2AX at Ser-139) is a critical factor that determines drug sensitivity and should be considered when administering chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Regulação para Baixo , Histonas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Camptotecina/farmacologia , Forma Celular , Células Cultivadas , Senescência Celular , Cisplatino/farmacologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Técnicas de Silenciamento de Genes , Histonas/genética , Humanos , Hidroxiureia/farmacologia , Camundongos , Camundongos Knockout , Mutação , Fenantrenos/farmacologia , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína Supressora de Tumor p53/genética
20.
Biochem Biophys Res Commun ; 432(1): 34-9, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23376716

RESUMO

Normal cells undergo a growth-arrested status that is produced by p53-dependent down-regulation of histone H2AX. Immortality is developed after abrogation of the H2AX-diminished state, which is associated with genomic instability (often with tetraploidy) and the induction of mutations in either the Arf or p53 gene. However, the role of Arf in control of H2AX expression and genome stability is still unclear. Here, we show that both Arf and p53 are required for the down-regulation of H2AX and formation of the growth-arrested state. Wild-type (WT) mouse embryonic fibroblasts (MEFs) subjected to tetraploidization with DNA lesions did not undergo mitotic catastrophe-associated cell death and stayed in a growth-arrested state, until immortality was attained with mutations in the Arf/p53 module and recovery of H2AX expression. Whereas tetraploidization was essential for immortalization of WT MEFs, this event was not required for immortalization of MEFs containing mutations in Arf/p53 and these cells still underwent mitotic catastrophe-associated cell death. Thus, WT MEFs are protected from immortalization with genome stability, which is abrogated with tetraploidization and mutation of either Arf or p53.


Assuntos
Pontos de Checagem do Ciclo Celular , Inibidor p16 de Quinase Dependente de Ciclina/fisiologia , Diploide , Instabilidade Genômica , Tetraploidia , Proteína Supressora de Tumor p53/fisiologia , Células 3T3 , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Histonas/metabolismo , Camundongos , Camundongos Knockout , Mitose , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA