Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Perinatol ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37967868

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is associated with coagulation abnormalities and increased risk for venous and arterial thrombi. This study aimed to evaluate D-dimer levels and lupus anticoagulant (LAC) positivity in pregnant individuals with and without Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. STUDY DESIGN: This was a prospective cohort study of pregnant individuals delivering at a single academic institution from April 2020 to March 2022. Individuals with a positive SARS-CoV-2 result during pregnancy were compared with a convenience sample of those without a positive SARS-CoV-2 result. For individuals with SARS-CoV-2 infection, severity was assessed based on the National Institutes of Health classification system. The primary outcome was D-dimer level measured during delivery admission. The secondary outcomes were LAC positivity and thromboembolic events. Outcomes were compared between individuals with and without a positive SARS-CoV-2 result, and further by disease severity. RESULTS: Of 98 participants, 77 (78.6%) were SARS-CoV-2 positive during pregnancy. Among individuals with SARS-CoV-2 infection, severity was asymptomatic in 20 (26.0%), mild in 13 (16.9%), moderate in 4 (5.2%), severe in 38 (49.4%), and critical in 2 (2.6%). The D-dimer concentration at delivery did not significantly differ between those with a SARS-CoV-2 positive result compared with those without (mean 2.03 µg/mL [95% confidence interval {CI} 1.72-2.40] vs. 2.37 µg/mL [95% CI 1.65-3.40]; p = 0.43). Three individuals (4%) with SARS-CoV-2 infection and none (0%) without infection were LAC positive (p = 0.59). There were no clinically apparent thromboses in either group. D-dimer concentrations and LAC positive results did not differ by COVID-19 severity. CONCLUSION: Thrombotic markers did not differ in pregnant individuals by SARS-CoV-2 infection; however, high rates of LAC positivity were detected. KEY POINTS: · Thrombotic markers did not differ in pregnant individuals by SARS-CoV-2 infection.. · Higher than expected rates of LAC positivity were detected.. · There were no clinically apparent thromboses..

2.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37471144

RESUMO

Protease-activated receptor 4 (PAR4) (gene F2RL3) harbors a functional dimorphism, rs773902 A/G (encoding Thr120/Ala120, respectively) and is associated with greater platelet aggregation. The A allele frequency is more common in Black individuals, and Black individuals have a higher incidence of ischemic stroke than White individuals. However, it is not known whether the A allele is responsible for worse stroke outcomes. To directly test the in vivo effect of this variant on stroke, we generated mice in which F2rl3 was replaced by F2RL3, thereby expressing human PAR4 (hPAR4) with either Thr120 or Ala120. Compared with hPAR4 Ala120 mice, hPAR4 Thr120 mice had worse stroke outcomes, mediated in part by enhanced platelet activation and platelet-neutrophil interactions. Analyses of 7,620 Black subjects with 487 incident ischemic strokes demonstrated the AA genotype was a risk for incident ischemic stroke and worse functional outcomes. In humanized mice, ticagrelor with or without aspirin improved stroke outcomes in hPAR4 Ala120 mice, but not in hPAR4 Thr120 mice. P selectin blockade improved stroke outcomes and reduced platelet-neutrophil interactions in hPAR4 Thr120 mice. Our results may explain some of the racial disparity in stroke and support the need for studies of nonstandard antiplatelet therapies for patients expressing PAR4 Thr120.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Animais , Camundongos , Receptores de Trombina/genética , Agregação Plaquetária/genética , Plaquetas/fisiologia , Inibidores da Agregação Plaquetária/farmacologia , Acidente Vascular Cerebral/genética , Receptor PAR-1
3.
J Thromb Haemost ; 21(9): 2569-2584, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37054916

RESUMO

BACKGROUND: COVID-19 severity and its late complications continue to be poorly understood. Neutrophil extracellular traps (NETs) form in acute COVID-19, likely contributing to morbidity and mortality. OBJECTIVES: This study evaluated immunothrombosis markers in a comprehensive cohort of acute and recovered COVID-19 patients, including the association of NETs with long COVID. METHODS: One-hundred-seventy-seven patients were recruited from clinical cohorts at 2 Israeli centers: acute COVID-19 (mild/moderate, severe/critical), convalescent COVID-19 (recovered and long COVID), along with 54 non-COVID controls. Plasma was examined for markers of platelet activation, coagulation, and NETs. Ex vivo NETosis induction capability was evaluated after neutrophil incubation with patient plasma. RESULTS: Soluble P-selectin, factor VIII, von Willebrand factor, and platelet factor 4 were significantly elevated in patients with COVID-19 versus controls. Myeloperoxidase (MPO)-DNA complex levels were increased only in severe COVID-19 and did not differentiate between COVID-19 severities or correlate with thrombotic markers. NETosis induction levels strongly correlated with illness severity/duration, platelet activation markers, and coagulation factors, and were significantly reduced upon dexamethasone treatment and recovery. Patients with long COVID maintained higher NETosis induction, but not NET fragments, compared to recovered convalescent patients. CONCLUSIONS: Increased NETosis induction can be detected in patients with long COVID. NETosis induction appears to be a more sensitive NET measurement than MPO-DNA levels in COVID-19, differentiating between disease severity and patients with long COVID. Ongoing NETosis induction capability in long COVID may provide insights into pathogenesis and serve as a surrogate marker for persistent pathology. This study emphasizes the need to explore neutrophil-targeted therapies in acute and chronic COVID-19.


Assuntos
COVID-19 , Armadilhas Extracelulares , Humanos , Síndrome de COVID-19 Pós-Aguda , Israel , Neutrófilos , Estudos de Coortes , DNA
4.
Blood Adv ; 6(7): 2303-2308, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-34883511

RESUMO

Platelet-neutrophil interactions regulate ischemic vascular injury. Platelets are activated by serine proteases that cleave protease-activated receptor (PAR) amino termini, resulting in an activating tethered ligand. Neutrophils release cathepsin G (CatG) at sites of injury and inflammation, which activates PAR4 but not PAR1, although the molecular mechanism of CatG-induced PAR4 activation is unknown. We show that blockade of the canonical PAR4 thrombin cleavage site did not alter CatG-induced platelet aggregation, suggesting CatG cleaves a different site than thrombin. Mass spectrometry analysis using PAR4 N-terminus peptides revealed CatG cleavage at Ser67-Arg68. A synthetic peptide, RALLLGWVPTR, representing the tethered ligand resulting from CatG proteolyzed PAR4, induced PAR4-dependent calcium flux and greater platelet aggregation than the thrombin-generated GYPGQV peptide. Mutating PAR4 Ser67or Arg68 reduced CatG-induced calcium flux without affecting thrombin-induced calcium flux. Dog platelets, which contain a conserved CatG PAR4 Ser-Arg cleavage site, aggregated in response to human CatG and RALLLGWVPTR, while mouse (Ser-Gln) and rat (Ser-Glu) platelets were unresponsive. Thus, CatG amputates the PAR4 thrombin cleavage site by cleavage at Ser67-Arg68 and activates PAR4 by generating a new functional tethered ligand. These findings support PAR4 as an important CatG signaling receptor and suggest a novel therapeutic approach for blocking platelet-neutrophil-mediated pathophysiologies.


Assuntos
Neutrófilos , Receptores de Trombina , Animais , Catepsina G , Cães , Ligantes , Camundongos , Neutrófilos/metabolismo , Proteólise , Ratos , Receptores de Trombina/metabolismo
5.
Blood ; 137(3): 293-294, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33475745
6.
Arterioscler Thromb Vasc Biol ; 41(1): 401-414, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33196292

RESUMO

OBJECTIVE: Coronavirus disease 2019 (COVID-19) is associated with derangement in biomarkers of coagulation and endothelial function and has been likened to the coagulopathy of sepsis. However, clinical laboratory metrics suggest key differences in these pathologies. We sought to determine whether plasma coagulation and fibrinolytic potential in patients with COVID-19 differ compared with healthy donors and critically ill patients with sepsis. Approach and Results: We performed comparative studies on plasmas from a single-center, cross-sectional observational study of 99 hospitalized patients (46 with COVID-19 and 53 with sepsis) and 18 healthy donors. We measured biomarkers of endogenous coagulation and fibrinolytic activity by immunoassays, thrombin, and plasmin generation potential by fluorescence and fibrin formation and lysis by turbidity. Compared with healthy donors, patients with COVID-19 or sepsis both had elevated fibrinogen, d-dimer, soluble TM (thrombomodulin), and plasmin-antiplasmin complexes. Patients with COVID-19 had increased thrombin generation potential despite prophylactic anticoagulation, whereas patients with sepsis did not. Plasma from patients with COVID-19 also had increased endogenous plasmin potential, whereas patients with sepsis showed delayed plasmin generation. The collective perturbations in plasma thrombin and plasmin generation permitted enhanced fibrin formation in both COVID-19 and sepsis. Unexpectedly, the lag times to thrombin, plasmin, and fibrin formation were prolonged with increased disease severity in COVID-19, suggesting a loss of coagulation-initiating mechanisms accompanies severe COVID-19. CONCLUSIONS: Both COVID-19 and sepsis are associated with endogenous activation of coagulation and fibrinolysis, but these diseases differently impact plasma procoagulant and fibrinolytic potential. Dysregulation of procoagulant and fibrinolytic pathways may uniquely contribute to the pathophysiology of COVID-19 and sepsis.


Assuntos
Transtornos da Coagulação Sanguínea/sangue , Coagulação Sanguínea/fisiologia , COVID-19/sangue , SARS-CoV-2 , Sepse/sangue , Biomarcadores/sangue , Transtornos da Coagulação Sanguínea/etiologia , COVID-19/complicações , COVID-19/epidemiologia , Estudos Transversais , Feminino , Fibrinolisina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Sepse/complicações
7.
Blood ; 136(10): 1169-1179, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32597954

RESUMO

COVID-19 affects millions of patients worldwide, with clinical presentation ranging from isolated thrombosis to acute respiratory distress syndrome (ARDS) requiring ventilator support. Neutrophil extracellular traps (NETs) originate from decondensed chromatin released to immobilize pathogens, and they can trigger immunothrombosis. We studied the connection between NETs and COVID-19 severity and progression. We conducted a prospective cohort study of COVID-19 patients (n = 33) and age- and sex-matched controls (n = 17). We measured plasma myeloperoxidase (MPO)-DNA complexes (NETs), platelet factor 4, RANTES, and selected cytokines. Three COVID-19 lung autopsies were examined for NETs and platelet involvement. We assessed NET formation ex vivo in COVID-19 neutrophils and in healthy neutrophils incubated with COVID-19 plasma. We also tested the ability of neonatal NET-inhibitory factor (nNIF) to block NET formation induced by COVID-19 plasma. Plasma MPO-DNA complexes increased in COVID-19, with intubation (P < .0001) and death (P < .0005) as outcome. Illness severity correlated directly with plasma MPO-DNA complexes (P = .0360), whereas Pao2/fraction of inspired oxygen correlated inversely (P = .0340). Soluble and cellular factors triggering NETs were significantly increased in COVID-19, and pulmonary autopsies confirmed NET-containing microthrombi with neutrophil-platelet infiltration. Finally, COVID-19 neutrophils ex vivo displayed excessive NETs at baseline, and COVID-19 plasma triggered NET formation, which was blocked by nNIF. Thus, NETs triggering immunothrombosis may, in part, explain the prothrombotic clinical presentations in COVID-19, and NETs may represent targets for therapeutic intervention.


Assuntos
Infecções por Coronavirus/complicações , Armadilhas Extracelulares/imunologia , Neutrófilos/imunologia , Pneumonia Viral/complicações , Trombose/complicações , Adulto , Idoso , Betacoronavirus/imunologia , Plaquetas/imunologia , Plaquetas/patologia , Proteínas Sanguíneas/imunologia , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infiltração de Neutrófilos , Neutrófilos/patologia , Pandemias , Peroxidase/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Estudos Prospectivos , SARS-CoV-2 , Trombose/imunologia , Trombose/patologia
8.
J Perinatol ; 40(6): 935-942, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32066841

RESUMO

BACKGROUND: Mortality and ECMO rates for congenital diaphragmatic hernia (CDH) remain ~30%. In 2016, we changed our CDH guidelines to minimize stimulation while relying on preductal oxygen saturation, lower mean airway pressures, stricter criteria for nitric oxide (iNO), and inotrope use. We compared rates of ECMO, survival, and survival without ECMO between the two epochs. DESIGN/METHODS: Retrospective review of left-sided CDH neonates at the University of Utah/Primary Children's Hospital NICUs during pre (2003-2015, n = 163) and post (2016-2019, n = 53) epochs was conducted. Regression analysis controlled for defect size and intra-thoracic liver. RESULTS: Following guideline changes, we identified a decrease in ECMO (37 to 13%; p = 0.001) and an increase in survival without ECMO (53 to 79%, p = 0.0001). Overall survival increased from 74 to 89% (p = 0.035). CONCLUSION(S): CDH management guideline changes focusing on minimizing stimulation, using preductal saturation and less aggressive ventilator/inotrope support were associated with decreased ECMO use and improved survival.


Assuntos
Oxigenação por Membrana Extracorpórea , Hérnias Diafragmáticas Congênitas , Criança , Hérnias Diafragmáticas Congênitas/terapia , Humanos , Recém-Nascido , Óxido Nítrico , Estudos Retrospectivos , Taxa de Sobrevida
9.
Front Immunol ; 7: 250, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446080

RESUMO

Overwhelming infection causes significant morbidity and mortality among patients treated with bone marrow transplantation (BMT) for primary immune deficiencies, syndromes of bone marrow failure, or cancer. The polymorphonuclear leukocyte (PMN; neutrophil) is the first responder to microbial invasion and acts within the innate immune system to contain and clear infections. PMNs contain, and possibly clear, infections in part by forming neutrophil extracellular traps (NETs). NETs are extensive lattices of extracellular DNA and decondensed chromatin decorated with antimicrobial proteins and degradative enzymes, such as histones, myeloperoxidase, and neutrophil elastase. They trap and contain microbes, including bacteria and fungi, and may directly affect extracellular microbial killing. Whether or not deficient NET formation contributes to the increased risk for overwhelming infection in patients undergoing BMT remains incompletely characterized, especially in the pediatric population. We examined NET formation in vitro in PMNs isolated from 24 patients who had undergone BMT for 13 different clinical indications. For these 24 study participants, the median age was 7 years. For 6 of the 24 patients, we examined NET formation by PMNs isolated from serial, peripheral blood samples drawn at three different clinical time points: pre-BMT, pre-engraftment, and post-engraftment. We found decreased NET formation by PMNs isolated from patients prior to BMT and during the pre-engraftment and post-engraftment phases, with decreased NET formation compared with healthy control PMNs detected even out to 199 days after their BMT. This decrease in NET formation after BMT did not result from neutrophil developmental immaturity as we demonstrated that >80% of the PMNs tested using flow cytometry expressed both CD10 and CD16 as markers of terminal differentiation along the neutrophilic lineage. These pilot study results mandate further exploration regarding the mechanisms or factors regulating NET formation by PMNs in patients at risk for overwhelming infection following BMT.

11.
J Infus Nurs ; 28(2): 130-4, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15785334

RESUMO

The diagnosis of neonatal necrotizing enterocolitis is one of great concern to pediatric and neonatal clinicians. Intravenous access remains an integral part of the medical and surgical management of infants with this diagnosis, and the infusion nurse is intimately involved in the care of these patients. This article discusses the definition of necrotizing enterocolitis, presents current knowledge regarding its basic pathophysiology, and identifies common and rare sequelae of this oftentimes devastating disease of premature infants. Medical and surgical management goals of therapy are described. This overview will aid the infusion nurse in caring for these patients.


Assuntos
Enterocolite Necrosante , Hidratação/métodos , Doenças do Prematuro , Terapia Intensiva Neonatal/métodos , Enfermagem Neonatal/métodos , Colectomia , Colostomia , Enterocolite Necrosante/diagnóstico , Enterocolite Necrosante/epidemiologia , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/terapia , Hidratação/enfermagem , Humanos , Incidência , Mortalidade Infantil , Recém-Nascido , Doenças do Prematuro/diagnóstico , Doenças do Prematuro/epidemiologia , Doenças do Prematuro/etiologia , Doenças do Prematuro/terapia , Unidades de Terapia Intensiva Neonatal , Perfuração Intestinal/etiologia , Morbidade , Prognóstico , Fatores de Risco
12.
Pediatr Clin North Am ; 51(3): 669-84, ix, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15157591

RESUMO

There are currently two major areas of resuscitation of the newborn which have come into question: the use of intermittent positive pressure ventilation and the use of oxygen. There is evolving evidence that volutrauma associated with IPPV, especially in the premature infant, may induce changes in the lung which can lead to chronic lung disease. There is reason to believe that the use of continuous positive airway pressure in premature infants who are making respiratory efforts may be less harmful than the use of IPPV. With regard to the use of oxygen, it is clear that most infants can be successfully resuscitated with room air. Although we can identify markers for oxidative stress in newborns when resuscitated with 100% oxygen, the clinical importance of these markers remain an open issue. If the presence of these markers after resuscitation is shown to relate to clinical problems, then the use of oxygen may need to be considered.


Assuntos
Apneia/terapia , Ventilação com Pressão Positiva Intermitente/normas , Oxigenoterapia/normas , Ressuscitação/normas , Árvores de Decisões , Capacidade Residual Funcional , Humanos , Recém-Nascido , Guias de Prática Clínica como Assunto , Volume de Ventilação Pulmonar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...