Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37629917

RESUMO

A reliable bonding interface between steel and Ti alloy is required for producing a steel/Ti bimetal composite. In this study, molecular dynamic simulations and diffusion welding experiments using the hot isostatic pressing process were conducted to study the atomic diffusion at the Fe-Ti interface. The simulation results indicate that the diffusion layer thickness is thinner in single crystals compared to polycrystals at the same temperature. This difference may be explained by polycrystals having grain boundaries, which increase atomic disorder and facilitate diffusion. The radial distribution function (RDF) curves for Fe-Fe and Ti-Ti exhibit a similar pattern over time, with a main peak indicating the highest atom density within a specific radius range and relatively strong binding between the central atoms and their nearest neighbors. The observed changes in the diffusion coefficient with temperature in the simulations align well with the experimental results. This study enhances the understanding of Fe-Ti interface diffusion mechanism and provides valuable insights for broader applications of steel/Ti bimetal composites.

2.
Micromachines (Basel) ; 13(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144149

RESUMO

The traditional acoustic attenuation coefficient is derived from an analogy of the attenuation of an electromagnetic wave propagating inside a non-ideal medium, featuring only the attenuation of wave propagation. Nonetheless, the particles inside viscous solids have mass, vibrating energy, viscosity, and inertia of motion, and they go through transient and damping attenuation processes. Based on the long-wavelength approximation, in this paper, we use the energy conservation law to analyze the effect of the viscosity of the medium on acoustic attenuation. We derive the acoustic attenuation coefficient by combinations of the dynamical equation of a solid in an acoustic field with conventional longitudinal wave propagation under a spring oscillator model. Considering the attenuation of propagating waves and the damping attenuation of particle vibration, we develop a frequency dispersion relation of phase velocity for the longitudinal wave propagating inside viscous solid media. We find that the acoustic impulse response and vibrational system function depends on the physical properties of the viscous solid media and their internal structure. Combined with system function, the impulse response can be an excellent tool to invert the physical properties of solids and their internal structures. We select a well-known rock sample for analysis, calculate the impulse response and vibrational system function, and reveal new physical insight into creating acoustic attenuation and frequency dispersion of phase velocity. The results showed that the newly developed acoustic attenuation coefficients enjoy a substantial improvement over the conventional acoustic attenuation coefficients reported in the literature, which is essential for industrial applications; so are the dispersion characteristics.

3.
Materials (Basel) ; 15(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35454634

RESUMO

Silicon carbide (SiC) is a promising material used in the advanced semiconductor industry. Fabricating SiC-on-insulator via H implantation is a good method. He and H co-implantation into Si can efficiently enhance exfoliation efficiency compared to only H implantation. In this study, 6H-SiC single crystals were implanted with He+ and H2+ dual beams at room temperature, followed by annealing at 1100 °C for 15 min, and irradiations with 60 keV He ions with a fluence of 1.5 × 1016 ions/cm-2 or 5.0 × 1016 ions/cm-2 and 100 keV H2+ ions with a fluence of 5 × 1016 ions/cm-2 were carried out. The lattice disorder was characterized by both Raman spectroscopy and transmission electron microscopy. The intensity of Raman peaks decreased with increasing fluence. No Raman shift or new phases were found. A very high numerical density of bubbles was observed as compared to single H or He implantation. Moreover, stacking faults, Frank loops and tangled dislocations were formed in the damaged layer. Surface exfoliation was inhibited by co-implantation. A possible reason for this is an increase in fracture toughness and a decrease in elastic out-of-plane strain due to dense bubbles and stacking faults.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...