Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276017

RESUMO

The conidia produced by Fusarium oxysporum f. sp. cubense (Foc), the causative agent of Fusarium Wilt of Banana (FWB), play central roles in the disease cycle, as the pathogen lacks a sexual reproduction process. Until now, the molecular regulation network of asexual sporogenesis has not been clearly understood in Foc. Herein, we identified and functionally characterized thirteen (13) putative sporulation-responsive genes in Foc, namely FocmedA(a), FocmedA(b), abaA-L, FocflbA, FocflbB, FocflbC, FocflbD, FocstuA, FocveA, FocvelB, wetA-L, FocfluG and Foclae1. We demonstrated that FocmedA(a), abaA-L, wetA-L, FocflbA, FocflbD, FocstuA, FocveA and Foclae1 mediate conidiophore formation, whereas FocmedA(a) and abaA-L are important for phialide formation and conidiophore formation. The expression level of abaA-L was significantly decreased in the ΔFocmedA(a) mutant, and yeast one-hybrid and ChIP-qPCR analyses further confirmed that FocMedA(a) could bind to the promoter of abaA-L during micro- and macroconidiation. Moreover, the transcript abundance of the wetA-L gene was significantly reduced in the ΔabaA-L mutant, and it not only was found to function as an activator of micro- and macroconidium formation but also served as a repressor of chlamydospore production. In addition, the deletions of FocflbB, FocflbC, FocstuA and Foclae1 resulted in increased chlamydosporulation, whereas FocflbD and FocvelB gene deletions reduced chlamydosporulation. Furthermore, FocflbC, FocflbD, Foclae1 and FocmedA(a) were found to be important regulators for pathogenicity and fusaric acid synthesis in Foc. The present study therefore advances our understanding of the regulation pathways of the asexual development and functional interdependence of sporulation-responsive genes in Foc.

2.
Appl Microbiol Biotechnol ; 105(14-15): 5915-5929, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34292355

RESUMO

Arginine is an important amino acid involved in processes such as cell signal transduction, protein synthesis, and sexual reproduction. To understand the biological roles of arginine biosynthesis in pathogenic fungi, we used Cpa1, the carbamoyl phosphate synthase arginine-specific small chain subunit in Saccharomyces cerevisiae as a query to identify its ortholog in the Magnaporthe oryzae genome and named it MoCpa1. MoCpa1 is a 471-amino acid protein containing a CPSase_sm_chain domain and a GATase domain. MoCpa1 transcripts were highly expressed at the conidiation, early-infection, and late-infection stages of the fungus. Targeted deletion of the MoCPA1 gene resulted in a ΔMocpa1 mutant exhibiting arginine auxotrophy on minimum culture medium (MM), confirming its role in de novo arginine biosynthesis. The ΔMocpa1 mutant presented significantly decreased sporulation with some of its conidia being defective in morphology. Furthermore, the ΔMocpa1 mutant was nonpathogenic on rice and barley leaves, which was a result of defects in appressorium-mediated penetration and restricted invasive hyphal growth within host cells. Addition of exogenous arginine partially rescued conidiation and pathogenicity defects on the barley and rice leaves, while introduction of the MoCPA1 gene into the ΔMocpa1 mutant fully complemented the lost phenotype. Further confocal microscopy examination revealed that MoCpa1 is localized in the mitochondria. In summary, our results demonstrate that MoCpa1-mediated arginine biosynthesis is crucial for fungal development, conidiation, appressorium formation, and infection-related morphogenesis in M. oryzae, thus serving as an attractive target for mitigating obstinate fungal plant pathogens. KEY POINTS: • MoCpa1 is important for aerial hyphal growth and arginine biosynthesis. • MoCpa1 is pivotal for conidial morphogenesis and appressorium formation. • MoCpa1 is crucial for full virulence in M. oryzae.


Assuntos
Magnaporthe , Oryza , Arginina , Ascomicetos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Magnaporthe/genética , Magnaporthe/metabolismo , Oryza/metabolismo , Doenças das Plantas , Esporos Fúngicos/metabolismo
3.
Mol Plant Pathol ; 21(10): 1307-1321, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32881238

RESUMO

The membrane trafficking system is important for compartmentalization of the biosynthesis pathway and secretion of deoxynivalenol (DON) mycotoxin (a virulence factor) in Fusarium graminearum. Flippases are transmembrane lipid transporters and mediate a number of essential physiological steps of membrane trafficking, including vesicle budding, charging, and protein diffusion within the membrane. However, the roles of flippases in secondary metabolism remain unknown in filamentous fungi. Herein, we identified five flippases (FgDnfA, FgDnfB, FgDnfC1, FgDnfC2, and FgDnfD) in F. graminearum and established their specific and redundant functions in the development and pathogenicity of this phytopathogenic fungus. Our results demonstrate that FgDnfA is critical for normal vegetative growth while the other flippases are dispensable. FgDnfA and FgDnfD were found crucial for the fungal pathogenesis, and a remarkable reduction in DON production was observed in ΔFgDNFA and ΔFgDNFD. Deletion of the FgDNFB gene increased DON production to about 30 times that produced by the wild type. Further analysis showed that FgDnfA and FgDnfD have positive roles in the regulation of trichothecene (TRI) genes (TRI1, TRI4, TRI5, TRI6, TRI12, and TRI101) expression and toxisome reorganization, while FgDnfB acts as a negative regulator of DON synthesis. In addition, FgDnfB and FgDnfD have redundant functions in the regulation of phosphatidylcholine transport, and double deletion of FgDNFB and FgDNFD showed serious defects in fungal development, DON synthesis, and virulence. Collectively, our findings reveal the distinct and specific functions of flippase family members in F. graminearum and principally demonstrate that FgDnfA, FgDnfD, and FgDnfB have specific spatiotemporal roles during toxisome biogenesis.


Assuntos
Proteínas Fúngicas , Fusarium , Tricotecenos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Metabolismo dos Lipídeos , Micotoxinas/metabolismo , Fosfatidilcolinas/metabolismo , Transporte Proteico , Metabolismo Secundário/genética , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
4.
Curr Genet ; 65(3): 773-783, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30631890

RESUMO

The soil-borne, asexual fungus Fusarium oxysporum f.sp. lycopersici (Fol) is a causal agent of tomato wilt disease. The infection process of Fol comprises root recognition, adhesion, penetration, colonization of the root cortex and hyphal proliferation within the xylem vessels, which are under the regulation of virulence-involved transcription factors (TFs). In this study, we identified a gene, designated FolCZF1, which encodes a C2H2 TF in Fol. The homologs of FolCzf1 are also known to affect pathogenicity in F. graminearum and Magnaporthe oryzae on wheat and rice, respectively. We learned that FolCZF1 transcript level is upregulated in conidia and early host infection stage, which led us to hypothesize that FolCzf1 is associated with early host infection in Fol. The FolCZF1 deletion mutant (ΔFolCZF1) exhibited defects in growth rate, conidiation, conidia morphology and a complete loss of virulence on tomato root. Further microscopic observation showed that ΔFolCZF1 can penetrate the root but the primary infection hypha cannot extend its colonization inside the host tissue, suggesting that FolCzf1 TF plays an important role in early infection. Fusaric acid, a secondary metabolite produced by Fusarium species, is suggested as a virulence factor in many crop diseases. We found that FolCzf1 plays a critical role in fusaric acid production by regulating the expression of fusaric acid biosynthesis genes. In summary, FolCzf1 is required for conidiation, secondary metabolism, and early host infection in Fol, and we propose that homologs of FolCzf1 are required for early parasitic growth in other plant pathogenic filamentous fungi.


Assuntos
Proteínas Fúngicas/metabolismo , Ácido Fusárico/metabolismo , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Esporos Fúngicos/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Raízes de Plantas/microbiologia , Deleção de Sequência , Fatores de Transcrição/genética , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Biotechnol Lett ; 35(3): 345-50, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23160739

RESUMO

A novel technique for internal structure and elemental distribution analyses of granular sludge is presented. Sludge samples were freeze-dried and embedded in epoxy resin to form a module, which were then ground and polished to obtain sequential cross-sections. The cross-sections were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). SEM observations showed that one granule was formed having several cores with different inorganic minerals, rather than a single core. EDX results indicate that the main elements of the granules are O, Ca, Mg, and P. In addition, the distribution areas of calcium and magnesium in the granule do not coincide.


Assuntos
Elementos Químicos , Esgotos/química , Águas Residuárias/química , Purificação da Água/métodos , Liofilização , Microscopia Eletrônica de Varredura , Microtomia , Manejo de Espécimes/métodos , Espectrometria por Raios X
6.
Ying Yong Sheng Tai Xue Bao ; 17(6): 1039-44, 2006 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-16964937

RESUMO

This paper studied the effects of wheat straw mulching, plastic film mulching, and wheat straw plus plastic film mulching on the growth and physiological characteristics of grafted and non-grafted Cucumis sativus in solar greenhouse. The results showed that compared with the control, the plant height, stem diameter, photosynthetic rate, and root vitality of grafted C. sativus under wheat straw plus plastic film mulching, plastic film mulching, and wheat straw mulching were increased by 91, 71 and 57 cm, 0.127, 0.086 and 0.111 cm, 2.63, 2.08 and 1.36 micromol x m(-2) x s(-1), and 0.98, 0.48 and 0.8 mg TTC x g(-1) FW, respectively, while non-grafted C. sativus had a less increment. The chlorophyll content of grafted C. sativus under wheat straw plus plastic film mulching and wheat straw mulching was 1.8% and 3.15% higher than the control, respectively, but that under plastic film mulching was 3.8% less than the control. Soil surface mulching increased the dry weight per plant, early yield, and total yield. Under wheat straw plus plastic film mulching, plastic film mulching, and wheat straw mulching, the individual yield of grafted C. sativus was 16%, 5.3% and 3.4% higher than that of non-grafted C. sativus, respectively.


Assuntos
Agricultura/métodos , Cucumis sativus/fisiologia , Solo/análise , Clorofila/metabolismo , Cucumis sativus/crescimento & desenvolvimento , Fotossíntese/fisiologia , Caules de Planta , Plásticos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...