Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 7(19): 8898-906, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25916796

RESUMO

Single crystalline TiO2 nanoparticles (NPs) with spherical morphology are successfully synthesized by a hydrothermal reaction under basic conditions. TiO2 NPs, selectively controlled to the sizes of 30, 40, 50, and 65 nm, are then applied to a mesoporous photoelectrode of CH3NH3PbI3 perovskite solar cells. In particular, a spherical TiO2 NP of 50 nm size (NP50) offers the highest photovoltaic conversion efficiency (PCE) of 17.19%, with JSC of 21.58 mA cm(-2), VOC of 1049 mV, and FF of 0.759 while the enhancement of PCE mainly arises from the increase of VOC and FF. Furthermore, the fabricated photovoltaic devices exhibit reproducible PCE values and very little hysteresis in their J-V curves. Time-resolved photoluminescence measurement and pulsed light-induced transient measurement of the photocurrent indicate that the device employing NP50 exhibits the longest electron lifetime although the electron injection from perovskite to TiO2 is less efficient than the devices with smaller TiO2 NPs. The extended electron lifetime is attributed to the suppression of electron recombination due to optimized mesopores generated by the spherical NP50.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...