Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2018: 4281230, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29887878

RESUMO

The Strong Uncorrelating Transform Complex Common Spatial Patterns (SUTCCSP) algorithm, designed for multichannel data analysis, has a limitation on keeping the correlation information among channels during the simultaneous diagonalization process of the covariance and pseudocovariance matrices. This paper focuses on the importance of preserving the correlation information among multichannel data and proposes the correlation assisted SUTCCSP (CASUT) algorithm to address this issue. The performance of the proposed algorithm was demonstrated by classifying the motor imagery electroencephalogram (EEG) dataset. The features were first extracted using CSP algorithms including the proposed method, and then the random forest classifier was utilized for the classification. Experiments using CASUT yielded an average classification accuracy of 78.10 (%), which significantly outperformed those of original CSP, Complex Common Spatial Patterns (CCSP), and SUTCCSP with p-values less than 0.01, tested by the Wilcoxon signed rank test.


Assuntos
Algoritmos , Eletroencefalografia , Processamento de Sinais Assistido por Computador , Encéfalo/fisiologia , Eletroencefalografia/métodos , Humanos , Imaginação , Atividade Motora/fisiologia
2.
Telemed J E Health ; 24(10): 753-772, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29420125

RESUMO

BACKGROUND: Stress recognition using electrocardiogram (ECG) signals requires the intractable long-term heart rate variability (HRV) parameter extraction process. This study proposes a novel deep learning framework to recognize the stressful states, the Deep ECGNet, using ultra short-term raw ECG signals without any feature engineering methods. METHODS: The Deep ECGNet was developed through various experiments and analysis of ECG waveforms. We proposed the optimal recurrent and convolutional neural networks architecture, and also the optimal convolution filter length (related to the P, Q, R, S, and T wave durations of ECG) and pooling length (related to the heart beat period) based on the optimization experiments and analysis on the waveform characteristics of ECG signals. The experiments were also conducted with conventional methods using HRV parameters and frequency features as a benchmark test. The data used in this study were obtained from Kwangwoon University in Korea (13 subjects, Case 1) and KU Leuven University in Belgium (9 subjects, Case 2). Experiments were designed according to various experimental protocols to elicit stressful conditions. RESULTS: The proposed framework to recognize stress conditions, the Deep ECGNet, outperformed the conventional approaches with the highest accuracy of 87.39% for Case 1 and 73.96% for Case 2, respectively, that is, 16.22% and 10.98% improvements compared with those of the conventional HRV method. CONCLUSIONS: We proposed an optimal deep learning architecture and its parameters for stress recognition, and the theoretical consideration on how to design the deep learning structure based on the periodic patterns of the raw ECG data. Experimental results in this study have proved that the proposed deep learning model, the Deep ECGNet, is an optimal structure to recognize the stress conditions using ultra short-term ECG data.


Assuntos
Aprendizado Profundo , Eletrocardiografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Estresse Psicológico/fisiopatologia , Adulto , Bélgica , Frequência Cardíaca/fisiologia , Humanos , Masculino , Redes Neurais de Computação , República da Coreia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...