Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35862331

RESUMO

The multilayer perceptron (MLP) neural network is interpreted from the geometrical viewpoint in this work, that is, an MLP partition an input feature space into multiple nonoverlapping subspaces using a set of hyperplanes, where the great majority of samples in a subspace belongs to one object class. Based on this high-level idea, we propose a three-layer feedforward MLP (FF-MLP) architecture for its implementation. In the first layer, the input feature space is split into multiple subspaces by a set of partitioning hyperplanes and rectified linear unit (ReLU) activation, which is implemented by the classical two-class linear discriminant analysis (LDA). In the second layer, each neuron activates one of the subspaces formed by the partitioning hyperplanes with specially designed weights. In the third layer, all subspaces of the same class are connected to an output node that represents the object class. The proposed design determines all MLP parameters in a feedforward one-pass fashion analytically without backpropagation. Experiments are conducted to compare the performance of the traditional backpropagation-based MLP (BP-MLP) and the new FF-MLP. It is observed that the FF-MLP outperforms the BP-MLP in terms of design time, training time, and classification performance in several benchmarking datasets. Our source code is available at https://colab.research.google.com/drive/1Gz0L8A-nT4ijrUchrhEXXsnaacrFdenn?usp = sharing.

2.
IEEE Trans Vis Comput Graph ; 15(4): 654-69, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19423889

RESUMO

The rapid and efficient creation of virtual environments has become a crucial part of virtual reality applications. In particular, civil and defense applications often require and employ detailed models of operations areas for training, simulations of different scenarios, planning for natural or man-made events, monitoring, surveillance, games, and films. A realistic representation of the large-scale environments is therefore imperative for the success of such applications since it increases the immersive experience of its users and helps reduce the difference between physical and virtual reality. However, the task of creating such large-scale virtual environments still remains a time-consuming and manual work. In this work, we propose a novel method for the rapid reconstruction of photorealistic large-scale virtual environments. First, a novel, extendible, parameterized geometric primitive is presented for the automatic building identification and reconstruction of building structures. In addition, buildings with complex roofs containing complex linear and nonlinear surfaces are reconstructed interactively using a linear polygonal and a nonlinear primitive, respectively. Second, we present a rendering pipeline for the composition of photorealistic textures, which unlike existing techniques, can recover missing or occluded texture information by integrating multiple information captured from different optical sensors (ground, aerial, and satellite).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...