Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cancer Gene Ther ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714850

RESUMO

TRIM58 is a member of the TRIM protein family, which possess with E3 ubiquitin ligase activities. Studies have revealed that low expression of TRIM58 plays key roles, has been implicated in the tumor progression of tumor formation due to its reduced expression. However, its role in regulating the stemness of breast cancer stem cells (CSCs) remains unexplored. Here, we found that TRIM58 was underexpressed in TNBC tissues and cells compared to adjacent mucosa tissue, and its downregulation was significantly associated with shorter survival. Overexpression of TRIM58 reduced the proportion of CD44 + /CD24- cells, upregulated differentiation genes, and inhibited stemness-related gene expression in TNBC CSCs. In vitro and in vivo experiments revealed that TRIM58 overexpression in CSCs suppressed tumor sphere formation and tumorigenic capacity. Co-IP results indicated direct interaction between TRIM58 and MYH9, with TRIM58 inducing MYH9 degradation via ubiquitination in differentiated cells. Label-free quantitative proteomics identified GRK3 and Hippo-YAP as downstream targets and signaling pathways of MYH9. TIMER database analysis, immunohistochemistry, western blotting, DNA-protein pulldown experiments, and dual luciferase reporter assays demonstrated that MYH9 regulated GRK3 transcriptional activation in CSCs. In conclusion, elevated TRIM58 expression in CSCs downregulates MYH9 protein levels by promoting ubiquitin-mediated degradation, thereby inhibiting downstream GRK3 transcription, inactivating the YAP stemness pathway, and ultimately promoting CSC differentiation.

3.
Int J Biochem Cell Biol ; 153: 106314, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265523

RESUMO

Programmed cell death 1 (PD-1) suppresses T effector functions by inhibiting signaling downstream of the T cell receptor and helping tumor cells escape the immune response. However, the effect and mechanism of cell-intrinsic PD-1 in cancer cells are still unknown. Here, we found that PD-1 is aberrantly upregulated in TNBC patients and cell lines. Cell-intrinsic PD-1 in TNBC cells significantly facilitated tumor growth and metastasis in vitro and in vivo. Further studies indicated that PD-1 effect on TNBC cell growth depends on the cell-intrinsic-PD-1/PD-L1 pathway independent of adaptive immunity. In addition, we further found that the activation of cell-intrinsic PD-1/PD-L1 pathway in TNBC cells is regulated by the gene expression regulator YB-1. Mechanistically, the results of protein degradation analysis, mRNA translationally active analysis, CLICK chemistry and L-azidohomoalanine (AHA) incorporation assays, immunoprecipitation assay and Dual-Luciferase reporter assay showed that YB-1 promotes PD-1 expression through the translational activation pathway. We provide in vitro and in vivo evidence that silencing YB-1 expression in TNBC cells inhibits cell proliferation, tumorigenesis, and metastasis. However, this inhibition can be rescued by simultaneous exogenous expression of PD-1 and PD-L1 proteins. In conclusion, our results identify TNBC cell-intrinsic functions of the PD-1/PD-L1 axis in tumor growth and metastasis; and revealed PD-1/PD-L1 is a critical effector of YB-1-mediated TNBC proliferation and metastasis in vitro and in vivo.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Humanos , Antígeno B7-H1/genética , Receptor de Morte Celular Programada 1/genética , Neoplasias de Mama Triplo Negativas/patologia , Proliferação de Células , Transdução de Sinais , Linhagem Celular Tumoral
4.
Ecotoxicology ; 22(8): 1241-54, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23943211

RESUMO

Avermectins (AVMs) are the active components of some insecticidal and nematicidal products used in agriculture and veterinary medicine for the prevention of parasitic diseases. Residues of AVM drugs or their metabolites in livestock feces have toxic effects on non-target aquatic and terrestrial organisms. In this study, oxidative stress responses and pathological changes on pigeon brain tissues and serum after subchronic exposure to AVM for 30, 60 and 90 days were investigated. The decrease in antioxidant enzyme (superoxide dismutase, SOD and glutathione peroxidase, GSH-Px) activities and increase in methane dicarboxylic aldehyde content in a dose-time-dependent manner in the brain and serum of pigeon were observed. The protein carbonyl content, an indicator of protein oxidation, and DNA-protein crosslink coefficient were significantly augmented with dose-time-dependent properties. The microscopic structures of the cerebrum, cerebellum and optic lobe altered obviously, the severity of which increased with the concentration of AVM and exposure time. The results imply that AVM could induce oxidative damage to the brain tissue and serum of pigeon. The information presented in this study is helpful to understand the mechanism of AVM-induced oxidative stress in birds.


Assuntos
Encéfalo/efeitos dos fármacos , Columbidae/anormalidades , Inseticidas/toxicidade , Ivermectina/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Encéfalo/patologia , Relação Dose-Resposta a Droga , Glutationa Peroxidase/metabolismo , Ivermectina/toxicidade , Carbonilação Proteica , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...