Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Methods ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969722

RESUMO

Detecting microsecond structural perturbations in biomolecules has wide relevance in biology, chemistry and medicine. Here we show how MHz repetition rates at X-ray free-electron lasers can be used to produce microsecond time-series of protein scattering with exceptionally low noise levels of 0.001%. We demonstrate the approach by examining Jɑ helix unfolding of a light-oxygen-voltage photosensory domain. This time-resolved acquisition strategy is easy to implement and widely applicable for direct observation of structural dynamics of many biochemical processes.

2.
World J Psychiatry ; 13(11): 848-861, 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38073897

RESUMO

BACKGROUND: Perioperative hypothermia (PH) negatively affects the physical and mental health of patients to varying degrees. Currently, there is no effective multidisciplinary team (MDT) intervention for gynecological patients with PH. AIM: To apply the best evidence on the prevention and management of PH in gynecological patients, improve the quality of perioperative evidence-based care based on treatment by an MDT for gynecological patients and analyze the effect of MDT- and evidence-based practice (EBP) projects on the psychological status and cognitive function of gynecological patients with PH. METHODS: Under the guidance of knowledge translation and combined with the opinions of involved stakeholders and clinical experts, the best evidence for PH prevention and management in gynecological patients was selected and adjusted to suit the practice setting. Based on the evidence, the practice plan was developed, and the MDT intervention was carried out in the preoperative ward, the preoperative preparation room, the intraoperative operating room, the postanesthesia care unit, and the 24-hour postoperative gynecological ward through the EBP program. The incidence of hypothermia, the nurses' awareness, the implementation rate of examination indicators, and the thermal comfort level, psychological status and cognitive function of patients were compared before and after the implementation of the program. RESULTS: The incidence of PH in gynecological patients decreased from 43.33% to 13.33% after the implementation of the scheme. The implementation rate of examination indicators 6-10, 12, 14, 16-18, 21, and 22 reached 100%, and that of other indicators was above 90%, except for examination indicators 5 and 13, which was 66.67%; the indices were significantly improved compared with the baseline (before evidence application) (P < 0.05). The score of nurses' awareness of PH prevention and management in gynecological patients increased from 60.96 ± 9.70 to 88.08 ± 8.96, and the difference was statistically significant (P < 0.001). The total score of the perioperative thermal comfort level of patients undergoing gynecological surgery was 27.97 ± 2.04, which was significantly increased compared with the score of 21.27 ± 1.57 observed by researchers at baseline (P < 0.001). The perioperative Hamilton Depression Scale and Hamilton Anxiety Scale scores of patients undergoing gynecological surgery decreased from 15.03 ± 3.16 and 13.93 ± 2.64 to 4.30 ± 1.15 and 3.53 ± 0.78, respectively, with statistically significant differences (P < 0.001). The perioperative Montreal Cognitive Assessment Scale score of the gynecological surgery patients increased from 23.17 ± 1.68 to 26.93 ± 1.11, also with statistical significance (P < 0.001). CONCLUSION: MDT-based EBP for PH prevention and management in gynecological patients during the perioperative period can standardize nursing operations, improve nurses' awareness and behavioral compliance with gynecological hypothermia management, and reduce the occurrence of PH in gynecological patients while playing a positive role in reducing patients' negative emotions and enhancing their cognitive function.

3.
Clin Transl Med ; 13(10): e1448, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37830387

RESUMO

BACKGROUND: The tumour microenvironment (TME) is a specialised niche involving intercellular communication among cancer cells and various host cells. Among the host cells, the quantity and quality of immune cells within the TME play essential roles in cancer development and management. The immunologically suppressive, so-called 'cold' TME established by a series of tumour-host interactions, including generating immunosuppressive cytokines and recruiting regulatory host immune cells, is associated with resistance to therapies and worse clinical outcomes. MAIN BODY: Various therapeutic approaches have been used to target the cold TME, including immune checkpoint blockade therapy and adoptive T-cell transfer. A promising, less explored therapeutic strategy involves targeting TME-associated exosomes. Exosomes are nanometer-sized, extracellular vesicles that transfer material from donor to recipient cells. These particles can reprogram the recipient cells and modulate the TME. In particular, exosomes from haematopoietic cells are known to promote or suppress cancer progression under specific conditions. Understanding the effects of haematopoietic cell-secreted exosomes may foster the development of therapeutic exosomes (tExos) for personalised cancer treatment. However, the development of exosome-based therapies has unique challenges, including scalable production, purification, storage and delivery of exosomes and controlling batch variations. Clinical trials are being conducted to verify the safety, feasibility, availability and efficacy of tExos. CONCLUSION: This review summarises our understanding of how haematopoietic cell-secreted exosomes regulate the TME and antitumour immunity and highlights present challenges and solutions for haematopoietic cell-derived exosome-based therapies.


Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias , Humanos , Exossomos/patologia , Neoplasias/tratamento farmacológico , Vesículas Extracelulares/patologia , Microambiente Tumoral
4.
IUCrJ ; 10(Pt 6): 662-670, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721770

RESUMO

X-ray free-electron lasers (XFELs) can probe chemical and biological reactions as they unfold with unprecedented spatial and temporal resolution. A principal challenge in this pursuit involves the delivery of samples to the X-ray interaction point in such a way that produces data of the highest possible quality and with maximal efficiency. This is hampered by intrinsic constraints posed by the light source and operation within a beamline environment. For liquid samples, the solution typically involves some form of high-speed liquid jet, capable of keeping up with the rate of X-ray pulses. However, conventional jets are not ideal because of radiation-induced explosions of the jet, as well as their cylindrical geometry combined with the X-ray pointing instability of many beamlines which causes the interaction volume to differ for every pulse. This complicates data analysis and contributes to measurement errors. An alternative geometry is a liquid sheet jet which, with its constant thickness over large areas, eliminates the problems related to X-ray pointing. Since liquid sheets can be made very thin, the radiation-induced explosion is reduced, boosting their stability. These are especially attractive for experiments which benefit from small interaction volumes such as fluctuation X-ray scattering and several types of spectroscopy. Although their use has increased for soft X-ray applications in recent years, there has not yet been wide-scale adoption at XFELs. Here, gas-accelerated liquid sheet jet sample injection is demonstrated at the European XFEL SPB/SFX nano focus beamline. Its performance relative to a conventional liquid jet is evaluated and superior performance across several key factors has been found. This includes a thickness profile ranging from hundreds of nanometres to 60 nm, a fourfold increase in background stability and favorable radiation-induced explosion dynamics at high repetition rates up to 1.13 MHz. Its minute thickness also suggests that ultrafast single-particle solution scattering is a possibility.

5.
ACS Omega ; 8(32): 29122-29130, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37599920

RESUMO

Slippery liquid-infused porous surfaces (SLIPS) are self-healing protective coatings that can be made by infiltration of a porous scaffold with a chemically resistant oil. A popular method to apply a SLIPS coating is using electrospinning to deposit a nanofiber mesh onto the intended substrate. However, electrospinning only lightly deposits the nanofibers onto the intended substrate, so the coating detaches easily even when unintended. We report a simple, yet effective, solution to the adhesion problem. Electrospun nanofiber meshes are typically well entangled and cohesive, so they can be detached from the electrospinning target and transferred onto the final target. Using a thin layer of adhesive on the intended surface, the electrospinning mesh can be securely attached and infiltrated with protective oil to yield a more stable SLIPS coating. An adhered coating can be submerged under corrosive solution and repeatedly self-heal from damage to the same spot. With the electrospun nanofiber meshes' flexibility and stretchability, the meshes can be fitted around a wide range of targets including ones that are otherwise difficult to apply a nanofiber mesh on. The use of an adhesive interlayer between the nanofiber mesh and substrate is a simple solution to improve coating stability, and the solution facilitates application of SLIPS onto a broader range of substrates.

6.
Aging Dis ; 14(4): 1276-1291, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163446

RESUMO

Cognitive impairment associated with vascular etiology has been of considerable interest in the development of dementia. Recent studies have started to uncover cerebral blood flow deficits in initiating cognitive deterioration. Brain microvascular pericytes, the only type of contractile cells in capillaries, are involved in the precise modulation of vascular hemodynamics due to their ability to regulate resistance in the capillaries. They exhibit potential in maintaining the capillary network geometry and basal vascular tone. In addition, pericytes can facilitate better blood flow supply in response to neurovascular coupling. Their dysfunction is thought to disturb cerebral blood flow causing metabolic imbalances or structural injuries, leading to consequent cognitive decline. In this review, we summarize the characteristics of microvascular pericytes in brain blood flow regulation and outline the framework of a two-hit hypothesis in cognitive decline, where we emphasize how pericytes serve as targets of cerebral blood flow dysregulation that occurs with neurological challenges, ranging from genetic factors, aging, and pathological proteins to ischemic stress.

7.
Front Public Health ; 11: 1059433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891348

RESUMO

Objective: To describe the trend of tuberculosis (TB) diagnosis in the migrant city Shenzhen, China, and analyze the risk factors of diagnosis delays. Methods: Demographic and clinical information of TB patients from 2011 to 2020 in Shenzhen were extracted. A bundle of measures to enhance TB diagnosis had been implemented since late 2017. We calculated the proportions of patients who underwent a patient delay (>30 days from syndrome onset to first care-seeking) or a hospital delay (>4 days from first care-seeking to TB diagnosis). Multivariable logistic regression was used to analyze the risk factors of diagnosis delays. Results: During the study period, 43,846 patients with active pulmonary TB were diagnosed and registered in Shenzhen. On average, the bacteriological positivity rate of the patients was 54.9%, and this increased from 38.6% in 2017 to 74.2% in 2020. Overall, 30.3 and 31.1% of patients had a patient delay or a hospital delay, respectively. Molecular testing significantly increased bacteriological positivity and decreased the risk of hospital delay. People >35 years old, the unemployed, and residents had a higher risk of delays in both patient care-seeking and hospital diagnosis than younger people, workers, or migrants. Compared with passive case-finding, active case-finding significantly decreased the risk of patient delay by 5.47 (4.85-6.19) times. Conclusion: The bacteriological positivity rate of TB patients in Shenzhen increased significantly but the diagnosis delays were still serious, which may need more attention when active case-finding in risk populations and optimization of molecular testing.


Assuntos
Tuberculose Pulmonar , Tuberculose , Humanos , Adulto , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/epidemiologia , Aceitação pelo Paciente de Cuidados de Saúde , Fatores de Risco , China/epidemiologia
8.
Proc Natl Acad Sci U S A ; 119(49): e2214278119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442099

RESUMO

The cGAS-STING pathway is essential for immune defense against microbial pathogens and malignant cells; as such, STING is an attractive target for cancer immunotherapy. However, systemic administration of STING agonists poses safety issues while intratumoral injection is limited by tumor accessibility. Here, we generated antibody-drug conjugates (ADCs) by conjugating a STING agonist through a cleavable linker to antibodies targeting tumor cells. Systemic administration of these ADCs was well tolerated and exhibited potent antitumor efficacy in syngeneic mouse tumor models. The STING ADC further synergized with an anti-PD-L1 antibody to achieve superior antitumor efficacy. The STING ADC promoted multiple aspects of innate and adaptive antitumor immune responses, including activation of dendritic cells, T cells, natural killer cells and natural killer T cells, as well as promotion of M2 to M1 polarization of tumor-associated macrophages. These results provided the proof of concept for clinical development of the STING ADCs.


Assuntos
Imunoconjugados , Neoplasias , Animais , Camundongos , Imunoterapia , Fatores Imunológicos , Neoplasias/terapia , Macrófagos Associados a Tumor
9.
Ann Transl Med ; 8(6): 367, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32355811

RESUMO

BACKGROUND: The aim of this study was to investigate the clinical effects of repairing large defects using the double circular suturing technique (DCST) after resection of abdominal wall tumor. METHODS: The clinical data of 62 patients (25 men, 37 women; average age 41.7±22.4 years) who underwent DCST between October 2010 and November 2018 for the repair of large abdominal wall defects with anti-adhesion underlay mesh after resection of abdominal wall tumor were retrospectively analyzed. The maximum diameter of abdominal wall defect after resection of abdominal wall tumor was 10.4±5.6 cm. The course of disease was 1-341 months, and the average was 32.4 months. Operative time, postoperative hospitalization time, perioperative complications, tumor recurrence in situ, incidence of postoperative chronic pain, and hernia were recorded. RESULTS: All 62 operations were completed successfully. The operative time was 73.2±31.4 minutes, and the mean postoperative hospitalization time was 9.6 days (range, 2-20 days). In total, 54 patients were followed up postoperatively for a median 6.7 years (range, 0.9-9.0 years). Partial splitting of incisions occurred in 2 patients, fat liquefaction of incisions occurred in 3 patients, and chronic pain occurred in 4 patients. No tumor in situ recurrence, hernia, or other complications were found in any cases in the follow-up. Tumor metastasis occurred in 9 patients with 6 of these patients dying of tumour progression. CONCLUSIONS: With simple operations, short procedure time, few complications, low tumor recurrence rate, and low incidence of postoperative chronic pain, application of DCST in the repair of large abdominal wall defects is effective after resection of abdominal wall tumor.

10.
Science ; 347(6227): aaa2630, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25636800

RESUMO

During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transporte Vesicular/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Quinase I-kappa B/metabolismo , Fator Regulador 3 de Interferon/química , Interferon-alfa/biossíntese , Interferon beta/biossíntese , Proteínas de Membrana/química , Camundongos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/metabolismo , Vírus Sendai/fisiologia , Serina/metabolismo , Transdução de Sinais , Ubiquitinação , Vesiculovirus/fisiologia
11.
J Zhejiang Univ Sci B ; 15(9): 820-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25183036

RESUMO

To investigate the effects of hypoxic exercise training on microRNA (miRNA) expression and the role of miRNA expression in regulating lipid metabolism, 20 dietary-induced obese SD rats were divided into a normoxic sedentary group (N, n=10) and a hypoxic exercise training group (H, n=10). After four weeks, measurements were taken of body weight, body length, fat mass, serum lipid concentration, miRNAs differentially expressed in rat liver, and gene and protein expression levels of peroxisome proliferator activated receptor α (PPARα), fatty acid synthetase (FAS), and carnitine palmitoyl transferase 1A (CPT1A) in rat liver. Body weight, Lee's index, fat mass, fat/weight ratio, and serum levels of total cholesterol (TC) and high density lipoprotein cholesterol (HDL-C) were all significantly lower in the H group than in the N group (P<0.01). Six miRNAs expressed significantly differently in the liver (P<0.05). Specifically, expression levels of miR-378b were significantly lower in the H group than in the N group (P<0.05). Compared with the normoxic sedentary group, hypoxic exercise training resulted in a lower ratio of FAS mRNA to CPT1A mRNA (P<0.05), as well as lower CPT1A protein levels (P<0.01), while a higher ratio of FAS to CPT1A protein levels (P<0.01) was observed. In conclusion, hypoxic training may elevate the resistance of high fat diet induced obesity in rats by reducing the expression of miR-378b, and decrease the fatty acid mitochondrial oxidation in obese rat livers by decreasing the protein expression of CPT1A and increasing the protein expression ratio of FAS/CPT1A.


Assuntos
Metabolismo dos Lipídeos/genética , Fígado/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/terapia , Condicionamento Físico Animal/métodos , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Dieta Hiperlipídica , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia/terapia , Masculino , Obesidade/genética , Obesidade/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Ratos , Ratos Sprague-Dawley , Redução de Peso
12.
Science ; 341(6148): 903-6, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23929945

RESUMO

Retroviruses, including HIV, can activate innate immune responses, but the host sensors for retroviruses are largely unknown. Here we show that HIV infection activates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) to produce cGAMP, which binds to and activates the adaptor protein STING to induce type I interferons and other cytokines. Inhibitors of HIV reverse transcriptase, but not integrase, abrogated interferon-ß induction by the virus, suggesting that the reverse-transcribed HIV DNA triggers the innate immune response. Knockout or knockdown of cGAS in mouse or human cell lines blocked cytokine induction by HIV, murine leukemia virus, and simian immunodeficiency virus. These results indicate that cGAS is an innate immune sensor of HIV and other retroviruses.


Assuntos
Infecções por HIV/imunologia , HIV/imunologia , Imunidade Inata , Nucleotidiltransferases/metabolismo , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Células HEK293 , HIV/efeitos dos fármacos , HIV/enzimologia , Infecções por HIV/enzimologia , Infecções por HIV/virologia , Transcriptase Reversa do HIV/antagonistas & inibidores , Humanos , Interferon beta/biossíntese , Proteínas de Membrana/metabolismo , Camundongos , Nucleotidiltransferases/genética , Retroviridae/imunologia , Infecções por Retroviridae/enzimologia , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologia , Inibidores da Transcriptase Reversa/farmacologia
13.
Elife ; 2: e00785, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23951545

RESUMO

RNA virus infections are detected by the RIG-I family of receptors, which induce type-I interferons through the mitochondrial protein MAVS. MAVS forms large prion-like polymers that activate the cytosolic kinases IKK and TBK1, which in turn activate NF-κB and IRF3, respectively, to induce interferons. Here we show that MAVS polymers recruit several TRAF proteins, including TRAF2, TRAF5, and TRAF6, through distinct TRAF-binding motifs. Mutations of these motifs that disrupted MAVS binding to TRAFs abrogated its ability to activate IRF3. IRF3 activation was also abolished in cells lacking TRAF2, 5, and 6. These TRAF proteins promoted ubiquitination reactions that recruited NEMO to the MAVS signaling complex, leading to the activation of IKK and TBK1. These results delineate the mechanism of MAVS signaling and reveal that TRAF2, 5, and 6, which are normally associated with NF-κB activation, also play a crucial role in IRF3 activation in antiviral immune responses. DOI:http://dx.doi.org/10.7554/eLife.00785.001.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Vírus Sendai/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Quinase I-kappa B/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Dados de Sequência Molecular , Polimerização , Ligação Proteica , Homologia de Sequência de Aminoácidos , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/fisiologia
14.
FEBS Lett ; 587(2): 170-7, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23201261

RESUMO

In this study we aim to elucidate the signaling pathway and biological function of autophagy induced by MNNG, a commonly used DNA alkylating agent. We first observed that MNNG is able to induce necrotic cell death and autophagy in Bax-/- Bak-/- double knockout MEFs. We analyzed the critical role of PARP-1 activation and ATP depletion in MNNG-mediated cell death and autophagy via AMPK activation and mTOR suppression. We provide evidence that suppression of AMPK blocks MNNG-induced autophagy and enhances cell death, suggesting the pro-survival function of autophagy in MNNG-treated cells. Taken together, data from this study reveal a novel mechanism in controlling MNNG-mediated autophagy via AMPK activation downstream of PARP-1 activation and ATP depletion.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Alquilantes/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Técnicas de Inativação de Genes , Metilnitronitrosoguanidina/farmacologia , Camundongos , Modelos Biológicos , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/deficiência , Proteína X Associada a bcl-2/genética
15.
Autophagy ; 7(10): 1173-86, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21808151

RESUMO

It has been well documented that cells deficient in either TSC1 or TSC2 are highly sensitive to various cell death stimuli. In this study, we utilized the TSC2 (-/-) mouse embryonic fibroblasts (MEFs) to study the involvement of autophagy in the enhanced susceptibility of TSC2-null cells to cell death. We first confirmed that both TSC1-null and TSC2-null MEFs are more sensitive to apoptosis in response to amino acid starvation (EBSS) and hypoxia. Second, we found that both the basal and inducible autophagy in TSC2 (-/-) MEFs is impaired, mainly due to constitutive activation of mTORC1. Third, suppression of autophagy by chloroquine and Atg7 knockdown sensitizes TSC2 (+/+) cells, but not TSC2 (-/-) cells, to EBSS-induced cell death. Conversely, the inhibition of mTORC1 by raptor knockdown and rapamycin activates autophagy and subsequently rescues TSC2 (-/-) cells. Finally, in starved cells, nutrient supplementations (insulin-like growth factor-1 (IGF-1) and leucine) enhanced cell death in TSC2 (-/-) cells, but reduced cell death in TSC2 (+/+) cells. Taken together, these data indicate that constitutive activation of mTORC1 in TSC2 (-/-) cells leads to suppression of autophagy and enhanced susceptibility to stress-mediated cell death. Our findings thus provide new insights into the complex relationships among mTOR, autophagy and cell death, and support the possible autophagy-targeted intervention strategies for the treatment of TSC-related pathologies.


Assuntos
Autofagia , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteína 7 Relacionada à Autofagia , Morte Celular , Linhagem Celular , Sobrevivência Celular , Cloroquina/farmacologia , Fibroblastos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos , Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fatores de Tempo , Transgenes
16.
J Biol Chem ; 286(16): 14190-8, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21321111

RESUMO

The protein kinase Akt (also known as protein kinase B) is a critical signaling hub downstream of various cellular stimuli such as growth factors that control cell survival, growth, and proliferation. The activity of Akt is tightly regulated, and the aberrant activation of Akt is associated with diverse human diseases including cancer. Although it is well documented that the mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of the Akt hydrophobic motif (Ser-473 in Akt1) is essential for full Akt activation, it remains unclear whether this phosphorylation has additional roles in regulating Akt activity. In this study, we found that abolishing Akt Ser-473 phosphorylation stabilizes Akt following agonist stimulation. The Akt Ser-473 phosphorylation promotes a Lys-48-linked polyubiquitination of Akt, resulting in its rapid proteasomal degradation. Moreover, blockade of this proteasomal degradation pathway prolongs agonist-induced Akt activation. These data reveal that mTORC2 plays a central role in regulating the Akt protein life cycle by first stabilizing Akt protein folding through the turn motif phosphorylation and then by promoting Akt protein degradation through the hydrophobic motif phosphorylation. Taken together, this study reveals that the Akt Ser-473 phosphorylation-dependent ubiquitination and degradation is an important negative feedback regulation that specifically terminates Akt activation.


Assuntos
Regulação Enzimológica da Expressão Gênica , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transativadores/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Humanos , Camundongos , Modelos Biológicos , Fosforilação , Ligação Proteica , Serina/química , Transdução de Sinais
17.
J Biol Chem ; 285(14): 10850-61, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20123989

RESUMO

A group of phosphoinositide 3-kinase (PI3K) inhibitors, such as 3-methyladenine (3-MA) and wortmannin, have been widely used as autophagy inhibitors based on their inhibitory effect on class III PI3K activity, which is known to be essential for induction of autophagy. In this study, we systematically examined and compared the effects of these two inhibitors on autophagy under both nutrient-rich and deprivation conditions. To our surprise, 3-MA is found to promote autophagy flux when treated under nutrient-rich conditions with a prolonged period of treatment, whereas it is still capable of suppressing starvation-induced autophagy. We first observed that there are marked increases of the autophagic markers in cells treated with 3-MA in full medium for a prolonged period of time (up to 9 h). Second, we provide convincing evidence that the increase of autophagic markers is the result of enhanced autophagic flux, not due to suppression of maturation of autophagosomes or lysosomal function. More importantly, we found that the autophagy promotion activity of 3-MA is due to its differential temporal effects on class I and class III PI3K; 3-MA blocks class I PI3K persistently, whereas its suppressive effect on class III PI3K is transient. Because 3-MA has been widely used as an autophagy inhibitor in the literature, understanding the dual role of 3-MA in autophagy thus suggests that caution should be exercised in the application of 3-MA in autophagy study.


Assuntos
Adenina/análogos & derivados , Autofagia , Embrião de Mamíferos/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Adenina/farmacologia , Androstadienos/farmacologia , Animais , Proteína 7 Relacionada à Autofagia , Western Blotting , Embrião de Mamíferos/citologia , Embrião de Mamíferos/enzimologia , Fibroblastos/citologia , Fibroblastos/enzimologia , Imunoprecipitação , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/classificação , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Inibidores de Fosfodiesterase/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Wortmanina
18.
Autophagy ; 5(6): 824-34, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19556857

RESUMO

Our previous work has shown that autophagy plays a pro-survival function in two necrotic cell death models: zVAD-treated L929 cells as well as H(2)O(2)-treated Bax(-/-)Bak(-/-) mouse embryonic fibroblasts (DKO MEF). This study aims to further explore the regulatory role of autophagy in necrosis by examining the functional role of the phosphoinositide-3 kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway. Our initial intriguing finding was that insulin is able to promote necrotic cell death induced by zVAD and MNNG in L929 cells or by H(2)O(2) in DKO MEF cells cultured in full-growth medium. The pro-necrosis function of insulin was further supported by the observations that insulin is capable of abolishing the protective effect of starvation on necrotic cell death induced by zVAD in L929 cells. Next, we demonstrated that insulin acts on the PI3K-Akt-mTOR pathway to promote necrosis as the suppression of the above pathway by either chemical inhibitors (LY294002 and rapamycin) or mTOR knockdown is able to mitigate the pro-death function of insulin. Finally, we provided evidence that the pro-death function of insulin is dependent on its inhibitory effect on autophagy, which serves as an important pro-survival function in necrosis. Taken together, here we provide compelling evidence to show that activation of the PI3K-Akt-mTOR signaling pathway can promote necrotic cell death via suppression of autophagy, at least in the necrosis models defined in our study in which autophagy serves as a pro-survival function. Data from this study not only further underscore the pro-survival function of autophagy in necrotic cell death, but also provide a novel insight into the intricate connections linking the PI3K-Akt-mTOR signaling pathway with cell death via modulation of autophagy.


Assuntos
Autofagia , Necrose/enzimologia , Necrose/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Técnicas de Silenciamento de Genes , Insulina/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos , Modelos Biológicos , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR
19.
Autophagy ; 4(4): 457-66, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18253089

RESUMO

The aim of this study is to examine the role of autophagy in cell death by using a well-established system in which zVAD, a pan-caspase inhibitor, induces necrotic cell death in L929 murine fibrosarcoma cells. First, we observed the presence of autophagic hallmarks, including an increased number of autophagosomes and the accumulation of LC3-II in zVAD-treated L929 cells. Since the presence of such autophagic hallmarks could be the result of either increased flux of autophagy or blockage of autophagosome maturation (lysosomal fusion and degradation), we next tested the effect of rapamycin, a specific inhibitor for mTOR, and chloroquine, a lysosomal enzyme inhibitor, on zVAD-induced cell death. To our surprise, rapamycin, known to be an autophagy inducer, blocked zVAD-induced cell death, whereas chloroquine greatly sensitized zVAD-induced cell death in L929 cells. Moreover, similar results with rapamycin and chloroquine were also observed in U937 cells when challenged with zVAD. Consistently, induction of autophagy by serum starvation offered significant protection against zVAD-induced cell death, whereas knockdown of Atg5, Atg7 or Beclin 1 markedly sensitized zVAD-induced cell death in L929 cells. More importantly, Atg genes knockdown completely abolished the protective effect of serum starvation on zVAD-induced cell death. Finally, we demonstrated that zVAD was able to inhibit lysosomal enzyme cathepsin B activity, and subsequently blocked autophagosome maturation. Taken together, in contrast to the previous conception that zVAD induces autophagic cell death, here we provide compelling evidence suggesting that autophagy serves as a cell survival mechanism and suppression of autophagy via inhibition of lysosomal function contributes to zVAD-induced necrotic cell death.


Assuntos
Clorometilcetonas de Aminoácidos/metabolismo , Autofagia/fisiologia , Inibidores de Caspase , Inibidores de Cisteína Proteinase/metabolismo , Necrose , Animais , Proteínas Reguladoras de Apoptose , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Proteína Beclina-1 , Biomarcadores/metabolismo , Catepsinas/metabolismo , Linhagem Celular , Cloroquina/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Marcação de Genes , Humanos , Lisossomos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/metabolismo , Proteínas/genética , Proteínas/metabolismo , Sirolimo/metabolismo
20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 27(4): 639-42, 2007 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-17608163

RESUMO

Europium-doped zinc oxide nanocrystalline was successfully prepared by sol-gel process. Photoluminescence spectrum (PL), Photoluminescence excitation spectrum(PLE), and X-ray diffraction pattern(XRD) of nanocrystalline ZnO : Eu3+ with excitation wavelength 395 nm were measured at room temperature. The XRD pattern indicates that nanocrystalline ZnO : Eu3+ has a hexagonal wurtzite structure and is polycrystalline. The mean grain size of nanocrystalline ZnO : Eu3+ was calculated by Debye-Scherrer formula. The luminescence process of Eu(3+) -doped zinc oxide nanocrystalline was investigate using PL and PLE. Emission of 5D0 --> 7F1 (595 nm), 5D0 --> 7F3 (653 nm), 5D0 --> 7F2 (611 nm) of Eu3+ ions, and a weak and wide visible band of ZnO were observed. Also, the photoluminescence of nanocrystalline ZnO : Eu3+ exhibits a blue-shift. An energy transfer from excited states of ZnO hosts to doped Eu3+ ions centers was disclosed by the fact that that photoluminescence intensity maximum of nanocrystalline ZnO : Eu3+ changs with the doping concentration of Eu3+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...