Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(31): 47549-47560, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35184240

RESUMO

In the present study, pyrophosphate (PP) was used to activate peroxymonosulfate (PMS) for acid orange 7 (AO7) removal under neutral pH conditions. The removal rate of AO7 (20 mg/L) was 84% within the reaction time with a rate constant value of 0.0165 min-1 under optimum conditions. Additionally, the effects of the concentrations of PMS and PP in solutions with various pH values and the coexisting inorganic anions on AO7 removal were measured. In addition, the performance of phosphate (P(V)) on PMS activation was compared with that of phosphite (P(III)) species. In contrast to P(III), the concentration of P(V) showed a positive correlation with the efficiency of AO7 decolorization. PMS activation in different types of buffer solutions was also examined, and the results indicated that the decolorization efficiency of AO7 induced by PP addition, and the buffer solution also contributed to PMS self-decomposition. Singlet oxygen (1O2) might be the primary reactive oxygen species (ROS) in the PP/PMS system in which AO7 is decolorized at an initial pH of 7.06, as indicated by quenching experiments and electron spin resonance (ESR) tests. Therefore, PP/PMS systems may be promising technologies for removing organic contaminants, particularly for PP-rich electroplating wastewater.


Assuntos
Difosfatos , Peróxidos , Compostos Azo , Benzenossulfonatos , Concentração de Íons de Hidrogênio , Oxirredução , Peróxidos/química
2.
Chemosphere ; 266: 129016, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33248738

RESUMO

In this study, phosphite (HPO32-) was used as a novel activator to activate peroxymonosulfate (PMS) for acid orange 7 (AO7) removal. Under the optimized conditions, the decolorization efficiency of AO7 was 82.1% within 60 min with rate constant values (kobs) of 0.0301 min-1. Besides, effects of the solution pH and the co-existing inorganic anions including Cl-, HCO3-, HPO42- and SO42- on AO7 removal were also investigated. Except for SO42-, other examined co-existing inorganic anions displayed favorable effects on the removal of AO7. Furthermore, the mechanism for PMS activation by the HPO32- was deeply elucidated by radical scavenger including ethanol (EtOH), tert-butanol (TBA), l-histidine and tiron, and electron spin resonance (ESR) studies. It was proposed that singlet oxygen (1O2) would be the dominant reactive oxygen species (ROS) in the HPO32-/PMS system for contamination degradation at neutral pH condition. The findings of this study provided useful information for the application of the substances in industrial wastewaters to activate PMS for organic contaminants degradation and in particular for HPO32--rich electroplating wastewater treatment.


Assuntos
Poluentes Ambientais , Fosfitos , Poluentes Químicos da Água , Cinética , Oxirredução , Peróxidos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...