Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 117, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347600

RESUMO

Post-translational modifications (PTMs) of the non-histone protein high-mobility group protein B1 (HMGB1) are involved in modulating inflammation and immune responses. Recent studies have implicated that the RNA-binding protein (RBP) Musashi-2 (MSI2) regulates multiple critical biological metabolic and immunoregulatory functions. However, the precise role of MSI2 in regulating PTMs and tumor immunity in colorectal cancer (CRC) remains unclear. Here, we present data indicating that MSI2 potentiates CRC immunopathology in colitis-associated colon cancer (CAC) mouse models, cell lines and clinical specimens, specifically via HMGB1-mediated dendritic cell (DC) maturation and migration, further contributes to the infiltration of CD4+ and CD8+ T cells and inflammatory responses. Under stress conditions, MSI2 can exacerbate the production, nucleocytoplasmic transport and extracellular release of damage-associated molecular patterns (DAMPs)-HMGB1 in CRC cells. Mechanistically, MSI2 mainly enhances the disulfide HMGB1 production and protein translation via direct binding to nucleotides 1403-1409 in the HMGB1 3' UTR, and interacts with the cytoplasmic acetyltransferase P300 to upregulate its expression, further promoting the acetylation of K29 residue in HMGB1, thus leading to K29-HMGB1 nucleocytoplasmic translocation and extracellular release. Furthermore, blocking HMGB1 activity with glycyrrhizic acid (Gly) attenuates MSI2-mediated immunopathology and immune infiltration in CRC in vitro and in vivo. Collectively, this study suggests that MSI2 may improve the prognosis of CRC patients by reprogramming the tumor immune microenvironment (TIME) through HMGB1-mediated PTMs, which might be a novel therapeutic option for CRC immunotherapy.


Assuntos
Neoplasias Colorretais , Proteína HMGB1 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Neoplasias Colorretais/metabolismo , Citosol/metabolismo , Proteína HMGB1/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/genética , Microambiente Tumoral
2.
Biol Proced Online ; 25(1): 32, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041016

RESUMO

BACKGROUND: Musashi-2 (MSI2) is a critical RNA-binding protein (RBP) whose ectopic expression drives the pathogenesis of various cancers. Accumulating evidence suggests that inducing ferroptosis of tumor cells can inhibit their malignant biological behavior as a promising therapeutic approach. However, it is unclear whether MSI2 regulates cell death in colorectal cancer (CRC), especially the underlying mechanisms and biological effects in CRC ferroptosis remain elusive. METHODS: Experimental methods including qRT‒PCR, immunofluorescence, flow cytometry, western blot, co-immunoprecipitation, CCK-8, colony formation assay, in vitro cell transwell migration and invasion assays, in vivo xenograft tumor experiments, liver and lung CRC metastasis models, CAC mice models, transmission electron microscopy, immunohistochemistry, histopathology, 4D label-free proteomics sequencing, bioinformatic and database analysis were used in this study. RESULTS: Here, we investigated that MSI2 was upregulated in CRC and positively correlated with ferroptosis inhibitor molecules. MSI2 deficiency suppressed CRC malignancy by inhibiting cell proliferation, viability, migration and invasion in vitro and in vivo; and MSI2 deficiency triggered CRC ferroptosis by changing the intracellular redox state (ROS levels and lipid peroxidation), erastin induced cell mortality and viability, iron homeostasis (intracellular total irons and ferrous irons), reduced glutathione (GSH) levels and mitochondrial injury. Mechanistically, through 4D-lable free proteomics analysis on SW620 stable cell lines, we demonstrated that MSI2 directly interacted with p-ERK and MSI2 knockdown downregulated the p-ERK/p38/MAPK axis signaling pathway, which further repressed MAPKAPK2 and HPSB1 phosphorylation, leading to decreased expression of PCNA and Ki67 and increased expression of ACSL4 in cancer cells. Furthermore, HSPB1 could rescue the phenotypes of MSI2 deficiency on CRC ferroptosis in vitro and in vivo. CONCLUSIONS: This study indicates that MSI2 deficiency suppresses the growth and survival of CRC cells and promotes ferroptosis by inactivating the MAPK signaling pathway to inhibit HSPB1 phosphorylation, which leads to downregulation of PCNA and Ki67 and upregulation of ACSL4 in cancer cells and subsequently induces redox imbalance, iron accumulation and mitochondrial shrinkage, ultimately triggering ferroptosis. Therefore, targeted inhibition of MSI2/MAPK/HSPB1 axis to promote ferroptosis might be a potential treatment strategy for CRC.

3.
Front Oncol ; 12: 949705, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338702

RESUMO

RNA-binding proteins (RBPs) mainly contribute to abnormalities in posttranscriptional gene regulation. The RBP Musashi-2, an evolutionarily conserved protein, has been characterized as an oncoprotein in various tumors. However, the prognostic value and potential roles of Musashi-2 in clear cell renal cell carcinoma (ccRCC) have not yet been elucidated. In this study, we found that Musashi-2 was mainly expressed in the normal distal tubular cells and collecting duct cells of the kidneys, while its expression was significantly decreased in ccRCC. And higher expression levels of Musashi-2 indicated better overall survival (OS) in ccRCC. Furthermore, immunohistochemistry demonstrated that PD-L1 expression was negatively correlated with Musashi-2 expression, and Musashi-2 was found to be remarkably correlated with multiple immune cells and immune inhibitors, including CD8+ T cells, CD4+ T cells, regulatory T (Treg) cells, PDCD1, CTLA4, Foxp3, and LAG3. Functional enrichment analysis revealed that Musashi-2 might be involved in ccRCC metabolic reprogramming and immune infiltration and further predicted the therapeutic sensitivity of ccRCC. Taken together, Musashi-2 is a prognostic biomarker for ccRCC patients that may provide novel insights into individualized treatment strategies and guide effective immunotherapy.

4.
Chemosphere ; 308(Pt 3): 136558, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150488

RESUMO

Synthetic phytohormone (SP) is regarded as an attractive candidate for microalgae cultivation due to its potential for high-value microalgae biomass production. Herein, α-naphthylacetic acid (NAA), indomethacin (IN) and 2,4-dichlorophenoxyacetic acid (2,4-D) were used for the mixotrophic cultivation of Chlorella pyrenoidosa with mariculture wastewater (MW) acidogenic fermentation effluent. The growth and lipid accumulation of Chlorella pyrenoidosa added with SP were enhanced, given their high bioavailability of the nutrients. Among these three SPs, IN was optimal for Chlorella pyrenoidosa growth, with the maximum optical density of 1.81. NAA exhibited the best performance for lipid production and the proportion of lipid reached 50.24%. Furthermore, the energy of Chlorella pyrenoidosa cultured with SP preferentially allocated to lipogenesis. To understand the mechanism of lipid accumulation in Chlorella pyrenoidosa in response to SP, the enzyme activities involved in carbon metabolism were determined. The malic enzyme (ME) and acetyl-CoA carboxylase (ACCase) were positively correlated with lipid accumulation. Phosphoenolpyruvate carboxylase (PEPC) was the negative feedback enzyme for lipid synthesis. The findings could provide valuable information for regulation mechanism of lipid accumulation and value-added products recovery by microalgae.


Assuntos
Chlorella , Microalgas , Ácido 2,4-Diclorofenoxiacético/metabolismo , Acetil-CoA Carboxilase/metabolismo , Biomassa , Carbono/metabolismo , Chlorella/metabolismo , Indometacina , Lipídeos , Microalgas/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Águas Residuárias
5.
Bioresour Technol ; 320(Pt A): 124335, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33157451

RESUMO

In this study, Bacterial-Algal Coupling System, a method integrated acidogenic fermentation (AF) and microalgae cultivation, was applied to the mariculture wastewater (MW) treatment. The MW was acidogenic fermented at different initial pH (4.0-10.0), and different dilution rate (5%-20%) of AF effluent was used for Chlorella vulgaris cultivation. The results showed that the maximum biomass production (5.6 g/L) of microalgae was obtained with 10% AF effluent. Ammonium, phosphate and volatile fatty acids could be metabolized by microalgae. More specifically, acetic acid and propionic acid were utilized prior to butyric acid and valeric acid. To better understand the synergy of heterotrophic metabolism and photosynthesis, the activities of Rubisco and citrate synthase were revealed to provide additional insight for nutrients recovery from MW by mixotrophic cultivation of microalgae.


Assuntos
Chlorella vulgaris , Microalgas , Purificação da Água , Biomassa , Fermentação , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...