Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 8(7)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284438

RESUMO

Melanin is synthesized through a series of oxidative reactions initiated with tyrosine and catalyzed by melanogenesis-related proteins such as tyrosinase, tyrosinase-related protein-1 (TRP-1), dopachrome tautomerase (TRP-2), and microphthalmia-associated transcription factor (MITF). Our previous study demonstrated that sesamol inhibited melanin synthesis through the inhibition of the melanocortin 1 receptor (MC1R)/MITF/tyrosinase pathway in B16F10 cells. In this study, sesamol was applied to C57BL/6 mouse skin to understand its activity with respect to skin pigmentation. The results indicated that ultraviolet (UV) B-induced hyperpigmentation in the C57BL/6 mouse skin was significantly reduced by topical application of sesamol for 4 weeks. Sesamol reduced the melanin index and melanin content of the skin. In addition, sesamol elevated the brightness (L* value) of the skin. Sesamol also reduced UVB-induced hyperplasia of epidermis and collagen degradation in dermis. In immunohistochemical staining, topical application of sesamol reduced UVB-induced tyrosinase, TRP-1, TRP-2, and MITF expression in the epidermis of the skin. These results demonstrated that sesamol is a potent depigmenting agent in the animal model.

2.
Int J Mol Sci ; 19(4)2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29642438

RESUMO

Melanin is synthesized through a series of interactions catalyzed by melanogenic enzymes such as tyrosinase, dopachrome tautomerase (tyrosinase-related protein-2; TRP-2), and tyrosinase-related protein-1 (TRP-1). Tyrosinase plays a key role in catalysing the initial and limiting steps of melanogenesis. The melanin that results from melanogenesis has the protective effect of absorbing ultraviolet radiation. However, overproduction of melanin, in addition to altering the appearance of skin, may lead to skin disorders such as melasma, solar lentigo, and postinflammatory hyperpigmentation. Previous studies have revealed that sesamol is a strong antioxidant and a free radical scavenger. In this study, we investigated the effects of sesamol on the regulation of melanogenesis and related mechanisms in B16F10 cells. The results indicated that sesamol inhibited tyrosinase activity and melanogenesis induced by α-melanocyte-stimulating hormone (α-MSH) in B16F10 melanoma cells. Sesamol decreased the protein level of melanocortin 1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase, and TRP-1 by downregulating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathways that had been activated by α-MSH. Sesamol increased glycogen synthase kinase 3 beta (GSK3ß), protein kinase B (AKT), and extracellular signal-related kinase (ERK) phosphorylation, thus inhibiting the transcription of MITF. Sesamol also inhibited melanin synthesis and tyrosinase expression by modulating ERK, phosphoinositide 3-kinase (PI3K)/AKT, p38, and c-Jun amino-terminal kinase (JNK) signalling pathways. These results indicate that sesamol acted as a potent depigmenting agent.


Assuntos
Antioxidantes/farmacologia , Benzodioxóis/farmacologia , Melaninas/biossíntese , Fenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo
3.
Molecules ; 21(9)2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27626393

RESUMO

Ergostatrien-3ß-ol (EK100), isolated from the submerged whole broth of Antrodia camphorata, has antidiabetic, hyperlipidemic, and hepatoprotective activities. However, the antiphotodamage activity of EK100 has still not been revealed. Inflammation and collagen degradation contribute to skin photodamage and premature aging. In the present study, in vivo experiments were designed to investigate the antiinflammatory and antiphotodamaging activities of EK100 in hairless mice by physiological and histological analysis of the skin. Results indicated that topical application of EK100 (25 and 100 µM) for 10 weeks efficiently inhibited ultraviolet B (UVB)-induced wrinkle formation, erythema, and epidermal thickness in the mice skin. EK100 also restored UVB-induced collagen content reduction in hairless mice skin. In addition, the immunohistochemistry results indicated that EK100 significantly inhibited the UVB-induced expression of matrix metalloproteinase-1 (MMP-1), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and nuclear factor kappaB (NF-κB) in the mouse skin. The expression of these proteins was similar to the Normal group after 100 µM EK100 treatment. EK100 inhibited collagen degradation in the skin through MMP-1 inhibition and antiinflammation. EK100 significantly reduced the transepidermal water loss (TEWL), indicating that EK100 protected skin from UVB-induced damage. Our findings strongly suggest that EK100 has significant beneficial antiinflammatory and antiphotoaging activities and that EK100 can be developed as an antiphotodamaging agent.


Assuntos
Anti-Inflamatórios , Antrodia/química , Ergosterol/análogos & derivados , Envelhecimento da Pele , Pele/metabolismo , Raios Ultravioleta/efeitos adversos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Ergosterol/química , Ergosterol/isolamento & purificação , Ergosterol/farmacologia , Camundongos , Camundongos Pelados , Pele/patologia , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação
4.
Curr Pharm Biotechnol ; 16(12): 1111-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26278531

RESUMO

Skin color is primarily produced by melanin, which is a crucial pigment that protects the skin from UV-induced damage and prevents carcinogenesis. However, accumulated melanin in the skin may cause hyperpigmentation and related disorders. Melanin synthesis comprises consecutive oxidative reactions, and tyrosinase is the enzyme that catalyzes the rate-limiting process of melanogenesis. In this study, tyrosinase-related protein 1 (TRP-1) and TRP-2 contributed to melanin formation. N-(4-bromophenethyl) caffeamide ((E)-N-(4-bromophenethyl)-3-(3,4-dihydroxyphenyl)acrylamide; K36H), a caffeic acid phenyl amide derivative, inhibited α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity in B16F0 cells. In addition, K36H reduced the protein expression of the phospho-cAMP response element binding protein (p-CREB), microphthalmia-associated transcription factor (MITF), tyrosinase, and TRP-1. Moreover, K36H promoted AKT and glycogen synthase kinase 3 beta (GSK3ß) phosphorylation, thereby inhibiting MITF transcription activity. Thus, K36H attenuated α-MSH-induced cAMP pathways, contributing to hypopigmentation. The results of a safety assay revealed that K36H did not exhibit cytotoxicity or irritate the skin or eyes. According to these results, K36H may have the potential to be used as a whitening agent in the cosmetic and pharmaceutical industries.


Assuntos
Ácidos Cafeicos/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica , Glicogênio Sintase Quinase 3 beta , Melanoma/metabolismo , Camundongos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...