Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Phycol ; 59(1): 152-166, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36369667

RESUMO

Trypsin is an ancient protease best known as a digestive enzyme in animals, and traditionally believed to be absent in plants and protists. However, our recent studies have revealed its wide presence and important roles in marine phytoplankton. Here, to gain a better understanding on the importance of trypsin in phytoplankton, we further surveyed the distribution, diversity, evolution and potential ecological roles of trypsin in global ocean phytoplankton. Our analysis indicated that trypsin is widely distributed both taxonomically and geographically in marine phytoplankton. Furthermore, by systematic comparative analyses we found that algal trypsin could be classified into two subfamilies (trypsin I and trypsin II) and exhibited highly duplicated and diversified during evolution. We also observed markedly different domain sequences and organizations between and within the subfamilies, suggesting potential neofunctionalization. Diatoms contain both subfamilies of trypsin, with higher numbers of genes and more environment-responsive expression of trypsin than other lineages. The duplication and subsequent neofunctionalization of the trypsin family may be important in diatoms for adapting to dynamical environmental conditions, contributing to diatoms' dominance in the coastal oceans. This work advances our knowledge on the distribution and neofunctionalization of this ancient enzyme and creates a new window of research on phytoplankton biology.


Assuntos
Diatomáceas , Fitoplâncton , Animais , Fitoplâncton/genética , Tripsina/metabolismo , Prevalência , Diatomáceas/genética , Oceanos e Mares
3.
mSystems ; 7(6): e0056322, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36317887

RESUMO

Phosphonates are important components of marine organic phosphorus, but their bioavailability and catabolism by eukaryotic phytoplankton remain enigmatic. Here, diatom Phaeodactylum tricornutum was used to investigate the bioavailability of phosphonates and describe the underlying molecular mechanism. The results showed that 2-aminoethylphosphonic acid (2-AEP) can be utilized as an alternative phosphorus source. Comparative transcriptomics revealed that the utilization of 2-AEP comprised 2 steps, including molecular uptake through clathrin-mediated endocytosis and incorporation into the membrane phospholipids in the form of diacylglyceryl-2-AEP (DAG-2-AEP). In the global ocean, we found the prevalence and dynamic expression pattern of key genes that are responsible for vesicle formation (CLTC, AP-2) and DAG-AEP synthesis (PCYT2, EPT1) in diatom assemblages. This study elucidates a distinctive mechanism of phosphonate utilization by diatoms, and discusses the ecological implications. IMPORTANCE Phosphonates contribute ~25% of total dissolved organic phosphorus in the ocean, and are found to be important for marine phosphorus biogeochemical cycle. As a type of biogenic phosphonate produced by microorganisms, 2-aminoethylphosphonic acid (2-AEP) widely exists in the ocean. It is well known that 2-AEP can be cleaved and utilized by prokaryotes, but its ability to support the growth of eukaryotic phytoplankton remains unclear. Our research identified the bioavailability of 2-AEP for the diatom Phaeodactylum tricornutum, and proposed a distinctive metabolic pathway of 2-AEP utilization. Different from the enzymatic hydrolysis of phosphonates, the results suggested that P. tricornutum utilizes 2-AEP by incorporating it into phospholipid instead of cleaving the C-P bond. Moreover, the ubiquitous distribution of associated representative gene transcripts in the environmental assemblages and the higher gene transcript abundance in the cold regions were observed, which suggests the possible environmental adaption of 2-AEP utilization by diatoms.


Assuntos
Diatomáceas , Organofosfonatos , Diatomáceas/genética , Transcriptoma , Organofosfonatos/metabolismo , Ácido Aminoetilfosfônico/metabolismo , Fitoplâncton/genética , Endocitose , Fósforo/metabolismo , Clatrina/genética
4.
Nat Commun ; 13(1): 4022, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821503

RESUMO

Trypsin is best known as a digestive enzyme in animals, but remains unexplored in phytoplankton, the major primary producers in the ocean. Here we report the prevalence of trypsin genes in global ocean phytoplankton and significant influences of environmental nitrogen (N) and phosphorus (P) on their expression. Using CRISPR/Cas9 mediated-knockout and overexpression analyses, we further reveal that a trypsin in Phaeodactylum tricornutum (PtTryp2) functions to repress N acquisition, but its expression decreases under N-deficiency to promote N acquisition. On the contrary, PtTryp2 promotes phosphate uptake per se, and its expression increases under P-deficiency to further reinforce P acquisition. Furthermore, PtTryp2 knockout led to amplitude magnification of the nitrate and phosphate uptake 'seesaw', whereas PtTryp2 overexpression dampened it, linking PtTryp2 to stabilizing N:P stoichiometry. Our data demonstrate that PtTryp2 is a coordinate regulator of N:P stoichiometric homeostasis. The study opens a window for deciphering how phytoplankton adapt to nutrient-variable marine environments.


Assuntos
Diatomáceas , Fitoplâncton , Diatomáceas/genética , Diatomáceas/metabolismo , Nutrientes , Fosfatos/metabolismo , Fitoplâncton/genética , Fitoplâncton/metabolismo , Tripsina/metabolismo
5.
Mol Ecol ; 31(12): 3389-3399, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35445467

RESUMO

Facing phosphate deficiency, phytoplankton use alkaline phosphatase (AP) to scavenge dissolved organophosphate (DOP). AP is a multitype (e.g., PhoA, PhoD) family of hydrolases and is known as a promiscuous enzyme with broad DOP substrate compatibility. Yet, whether the multiple types differentiate on substrates and collaborate to provide physiological flexibility remain elusive. Here we identify PhoA and PhoDs and document the functional differentiation between PhoA and a PhoD (PhoD_45757) in Phaeodactylum tricornutum. CRISPR/Cas9-based mutations and physiological analyses reveal that (1) PhoA is a secreted enzyme and contributes the majority of total AP activity whereas PhoD_45757 is intracellular and contributes a minor fraction of the total AP activity, (2) AP gene expression compensates for each other after one is disrupted, (3) the DOP→PhoA→phosphate_uptake and the DOP_uptake→PhoD→phosphate pathways function interchangeably for some DOP substrates. These findings shed light on the underpinning of AP's multiformity and have important implications in phytoplankton phosphorus-nutrient niche differentiation, physiological plasticity, and competitive strategy.


Assuntos
Diatomáceas , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Diatomáceas/genética , Organofosfatos/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Fitoplâncton/genética
6.
Genome ; 61(5): 349-358, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29620473

RESUMO

Gene expression analysis provides important clues regarding gene functions, and quantitative real-time PCR (qRT-PCR) is a widely used method in gene expression studies. Reference genes are essential for normalizing and accurately assessing gene expression. In the present study, 16 candidate reference genes (ACTB, CyPA, EF1-α, GAPDH, HSP90, NDPk, RPL13a, RPL18, RPL19, RPL32, RPL4, RPL8, RPS13, RPS4, α-TUB, and ß-TUB) from Plutella xylostella were selected to evaluate gene expression stability across different experimental conditions using five statistical algorithms (geNorm, NormFinder, Delta Ct, BestKeeper, and RefFinder). The results suggest that different reference genes or combinations of reference genes are suitable for normalization in gene expression studies of P. xylostella according to the different developmental stages, strains, tissues, and insecticide treatments. Based on the given experimental sets, the most stable reference genes were RPS4 across different developmental stages, RPL8 across different strains and tissues, and EF1-α across different insecticide treatments. A comprehensive and systematic assessment of potential reference genes for gene expression normalization is essential for post-genomic functional research in P. xylostella, a notorious pest with worldwide distribution and a high capacity to adapt and develop resistance to insecticides.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Genes Essenciais , Genes de Insetos , Mariposas/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Proteínas Ribossômicas/genética , Algoritmos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Inseticidas , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Padrões de Referência , Proteínas Ribossômicas/metabolismo
7.
Insect Sci ; 25(6): 946-958, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28569426

RESUMO

The diamondback moth, Plutella xylostella (L.), uses sulfatases (SULF) to counteract the glucosinolate-myrosinase defensive system that cruciferous plants have evolved to deter insect feeding. Sulfatase activity is regulated by post-translational modification of a cysteine residue by sulfatase modifying factor 1 (SUMF1). We identified 12 SULF genes (PxylSulfs) and two SUMF1 genes (PxylSumf1s) in the P. xylostella genome. Phylogenetic analysis of SULFs and SUMFs from P. xylostella, Bombyx mori, Manduca sexta, Heliconius melpomene, Danaus plexippus, Drosophila melanogaster, Tetranychus urticae and Homo sapiens showed that the SULFs were clustered into five groups, and the SUMFs could be divided into two groups. Profiling of the expression of PxylSulfs and PxylSumfs by RNA-seq and by quantitative real-time polymerase chain reaction showed that two glucosinolate sulfatase genes (GSS), PxylSulf2 and PxylSulf3, were primarily expressed in the midgut of 3rd- and 4th-instar larvae. Moreover, expression of sulfatases PxylSulf2, PxylSulf3 and PxylSulf4 were correlated with expression of the sulfatases modifying factor PxylSumf1a. The findings from this study provide new insights into the structure and expression of SUMF1 and PxylSulf genes that are considered to be key factors for the evolutionary success of P. xylostella as a specialist herbivore of cruciferous plants.


Assuntos
Regulação Enzimológica da Expressão Gênica , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Mariposas/enzimologia , Sulfatases/química , Sulfatases/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Proteínas de Insetos/genética , Mariposas/metabolismo , Especificidade de Órgãos , Filogenia , Domínios Proteicos , Sulfatases/genética
8.
Pest Manag Sci ; 73(6): 1204-1212, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27717121

RESUMO

BACKGROUND: Carboxylesterases (CarEs) are involved in metabolic detoxification of dietary and environmental xenobiotics in insects. However, owing to the complexity of the protein family, the involvement of CarEs in insecticide metabolism in Plutella xylostella has not been fully elucidated. This study aimed to characterise two CarE genes and assess their potential roles in response to chlorpyrifos in P. xylostella. RESULTS: Synergistic tests showed that triphenyl phosphate decreased the resistance of the third-instar larvae to chlorpyrifos. The treatment of the third-instar larvae with chlorpyrifos at the LC30 dose led to a significant increase in CarE activity. Two CarE cDNAs (Pxae18 and Pxae28) were subsequently sequenced and characterised. Both genes were expressed predominantly in the larval midgut. Most importantly, two CarE genes showed significantly higher expression in the chlorpyrifos-resistant strain than in the susceptible strain. RNAi knockdown of Pxae18 and Pxae28 significantly increased the mortality to chlorpyrifos from 40% in the control to 73.8 and 63.3% respectively. CONCLUSION: RNAi knockdown of Pxae18 and Pxae28 significantly inhibited detoxification ability and increased the mortality in P. xylostella. The results indicate that these two CarE genes play important roles in the detoxification of chlorpyrifos in P. xylostella. © 2016 Society of Chemical Industry.


Assuntos
Hidrolases de Éster Carboxílico/genética , Clorpirifos/metabolismo , Inseticidas/metabolismo , Mariposas/genética , Animais , Hidrolases de Éster Carboxílico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inativação Metabólica , Larva/genética , Larva/metabolismo , Mariposas/metabolismo , Organofosfatos/farmacologia , Interferência de RNA
9.
BMC Genomics ; 16: 152, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25887517

RESUMO

BACKGROUND: Glutathione S-transferases (GSTs) are multifunctional detoxification enzymes that play important roles in insects. The completion of several insect genome projects has enabled the identification and characterization of GST genes over recent years. This study presents a genome-wide investigation of the diamondback moth (DBM), Plutella xylostella, a species in which the GSTs are of special importance because this pest is highly resistant to many insecticides. RESULTS: A total of 22 putative cytosolic GSTs were identified from a published P. xylostella genome and grouped into 6 subclasses (with two unclassified). Delta, Epsilon and Omega GSTs were numerically superior with 5 genes for each of the subclasses. The resulting phylogenetic tree showed that the P. xylostella GSTs were all clustered into Lepidoptera-specific branches. Intron sites and phases as well as GSH binding sites were strongly conserved within each of the subclasses in the GSTs of P. xylostella. Transcriptome-, RNA-seq- and qRT-PCR-based analyses showed that the GST genes were developmental stage- and strain-specifically expressed. Most of the highly expressed genes in insecticide resistant strains were also predominantly expressed in the Malpighian tubules, midgut or epidermis. CONCLUSIONS: To date, this is the most comprehensive study on genome-wide identification, characterization and expression profiling of the GST family in P. xylostella. The diversified features and expression patterns of the GSTs are inferred to be associated with the capacity of this species to develop resistance to a wide range of pesticides and biological toxins. Our findings provide a base for functional research on specific GST genes, a better understanding of the evolution of insecticide resistance, and strategies for more sustainable management of the pest.


Assuntos
Expressão Gênica , Glutationa Transferase/biossíntese , Resistência a Inseticidas/genética , Lepidópteros/genética , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Genoma de Inseto , Glutationa Transferase/genética , Íntrons/genética , Lepidópteros/enzimologia , Filogenia , Transcriptoma/genética
10.
Nat Genet ; 45(2): 220-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23313953

RESUMO

How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.


Assuntos
Adaptação Biológica/genética , Variação Genética , Genoma/genética , Glucosinolatos/metabolismo , Herbivoria/genética , Heterozigoto , Mariposas/genética , Filogenia , Animais , Sequência de Bases , China , Cromossomos Artificiais Bacterianos , Biologia Computacional , Evolução Molecular , Etiquetas de Sequências Expressas , Feminino , Perfilação da Expressão Gênica , Masculino , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mariposas/metabolismo , Mutação/genética , Controle de Pragas/métodos , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Sulfatases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...