Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 18: 100534, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36686036

RESUMO

The widespread utilization of mupirocin to treat methicillin-resistant Staphylococcus aureus (MRSA)-caused infectious diseases has led to the emergence of mupirocin-resistant Staphylococcus aureus (MuRSA), posing a serious global medical threat. In order to counteract MuRSA, we develop a d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) modified mupirocin and silver complex (TPGS/Mup-Ag) to combat MuRSA. The surfactivity of TPGS endows Mup-Ag with a homogeneous and small particle size (∼16 â€‹nm), which significantly enhances bacterial internalization. Silver ions are released from the mupirocin-Ag complex (Mup-Ag) to exert a synergistic antibacterial activity with mupirocin. Results manifest that our strategy reduces the concentration of mupirocin that induces 50% bacterial death from about 1000 â€‹µmol/mL to about 16 â€‹µmol/mL. In vitro bacterial infection model suggests that TPGS/Mup-Ag can not only eliminate both intracellular and inhibit bacterial adhesion, but also living cells are not affected. Results of in vivo experiments demonstrate that TPGS/Mup-Ag can effectively inhibit the progression of skin infection and accelerate wound healing, as well as alleviate systemic inflammation in both the subcutaneous infection model and the wound infection model. Furthermore, this study may contribute to the development of therapeutic agents for antibiotic-resistant bacteria and offer ideas for silver-based bactericides.

2.
ACS Nano ; 15(11): 17361-17374, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34662120

RESUMO

Extremely limited drug retention and depigmentation represent the greatest barriers against vitiligo treatment advancement. Here, inspired by biological melanosomes, the primary melanin transporter, we developed biomimetic melanosomes to combat reactive oxygen species (ROS)-mediated melanocyte damage and depigmentation. Briefly, methylprednisolone (MPS) and melanin-mimicking polydopamine (PDA) were encapsulated inside lysine-proline-valine (KPV)-modified deformable liposomes (KPV-Lipos). Owing to their phospholipid bilayer flexibility and the specific affinity for melanocortin 1 receptor (MC1R), KPV-Lipos exhibited 1.43-fold greater skin deposition than traditional liposomes. The binding of KPV and its receptor also contributed to activating the cAMP-tyrosinase (TYR) signaling pathway, improving the endogenous melanin content. In addition, PDA mimicked melanosomes as it effectively increased the exogenous melanin content and scavenged ROS. Meanwhile, MPS inhibited inflammatory cytokine secretion, limiting the depigmented area. Ultimately, the biomimetic melanosomes affected the skin color of mice with H2O2-induced vitiligo. These melanosomes show potential as a universal platform for the self-supply of melanin by self-driven melanin synthesis with exogenous supplementation. Furthermore, this study offers ideas for the production of artificial packed melanosome substitutes for melanocyte-related diseases.


Assuntos
Melanossomas , Vitiligo , Camundongos , Animais , Vitiligo/tratamento farmacológico , Vitiligo/metabolismo , Melaninas , Peróxido de Hidrogênio/metabolismo , Biomimética , Lipossomos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Melanócitos/metabolismo , Pigmentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...