Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMB Rep ; 50(9): 460-465, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28760196

RESUMO

Polycystic kidney disease (PKD) is one of the most common inherited disorders, involving progressive cyst formation in the kidney that leads to renal failure. FK506 binding protein 12 (FK506BP) is an immunophilin protein that performs multiple functions, including regulation of cell signaling pathways and survival. In this study, we determined the roles of PEP-1-FK506BP on cell proliferation and cyst formation in PKD cells. Purified PEP-1-FK506BP transduced into PKD cells markedly inhibited cell proliferation. Also, PEP-1-FK506BP drastically inhibited the expression levels of p-Akt, p-p70S6K, p-mTOR, and p-ERK in PKD cells. In a 3D-culture system, PEP-1-FK506BP significantly reduced cyst formation. Furthermore, the combined effects of rapamycin and PEP-1-FK506BP on cyst formation were markedly higher than the effects of individual treatments. These results suggest that PEP-1-FK506BP delayed cyst formation and could be a new therapeutic strategy for renal cyst formation in PKD. [BMB Reports 2017; 50(9): 460-465].


Assuntos
Doenças Renais Policísticas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 1A de Ligação a Tacrolimo/metabolismo , Animais , Western Blotting , Proliferação de Células/genética , Proliferação de Células/fisiologia , Cistos/genética , Cistos/metabolismo , Modelos Animais de Doenças , Humanos , Microscopia Confocal , Doenças Renais Policísticas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética , Proteína 1A de Ligação a Tacrolimo/genética
2.
BMB Rep ; 48(11): 618-23, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25817214

RESUMO

FK506 binding protein 12 (FK506BP) is a small peptide with a single FK506BP domain that is involved in suppression of immune response and reactive oxygen species. FK506BP has emerged as a potential drug target for several inflammatory diseases. Here, we examined the protective effects of directly applied cell permeable FK506BP (PEP-1-FK506BP) on corneal alkali burn injury (CAI). In the cornea, there was a significant decrease in the number of cells expressing pro-inflammation, apoptotic, and angiogenic factors such as TNF-α, COX-2, and VEGF. Both corneal opacity and corneal neovascularization (CNV) were significantly decreased in the PEP-1-FK506BP treated group. Our results showed that PEP-1-FK506BP can significantly inhibit alkali burn-induced corneal inflammation in rats, possibly by accelerating corneal wound healing and by reducing the production of angiogenic factors and inflammatory cytokines. These results suggest that PEP-1-FK506BP may be a potential therapeutic agent for CAI.


Assuntos
Queimaduras Químicas/tratamento farmacológico , Córnea/efeitos dos fármacos , Lesões da Córnea/prevenção & controle , Queimaduras Oculares/tratamento farmacológico , Proteínas de Ligação a Tacrolimo/farmacologia , Animais , Queimaduras Químicas/patologia , Córnea/patologia , Neovascularização da Córnea/metabolismo , Modelos Animais de Doenças , Queimaduras Oculares/patologia , Inflamação/metabolismo , Masculino , Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
3.
Toxicol Appl Pharmacol ; 286(2): 124-34, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25818598

RESUMO

Human carbonyl reductase 1 (CBR1) plays a crucial role in cell survival and protects against oxidative stress response. However, its anti-inflammatory effects are not yet clearly understood. In this study, we examined whether CBR1 protects against inflammatory responses in macrophages and mice using a Tat-CBR1 protein which is able to penetrate into cells. The results revealed that purified Tat-CBR1 protein efficiently transduced into Raw 264.7 cells and inhibited lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2), nitric oxide (NO) and prostaglandin E2 (PGE2) expression levels. In addition, Tat-CBR1 protein leads to decreased pro-inflammatory cytokine expression through suppression of nuclear transcription factor-kappaB (NF-κB) and mitogen activated protein kinase (MAPK) activation. Furthermore, Tat-CBR1 protein inhibited inflammatory responses in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation when applied topically. These findings indicate that Tat-CBR1 protein has anti-inflammatory properties in vitro and in vivo through inhibition of NF-κB and MAPK activation, suggesting that Tat-CBR1 protein may have potential as a therapeutic agent against inflammatory diseases.


Assuntos
Oxirredutases do Álcool/farmacologia , Anti-Inflamatórios/farmacologia , Edema/tratamento farmacológico , Produtos do Gene tat/farmacologia , Macrófagos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Animais , Orelha Externa/patologia , Edema/induzido quimicamente , Edema/patologia , Ativação Enzimática/efeitos dos fármacos , Lipopolissacarídeos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Frações Subcelulares/efeitos dos fármacos , Acetato de Tetradecanoilforbol
4.
BMB Rep ; 48(3): 153-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24998262

RESUMO

As FK506 binding proteins (FK506BPs) are known to play an important role in the regulation of a variety of biological processes related to cell survival, this study was designed to examined the protective effects of FK506 binding protein 12 (FK506BP) on low humidity air flow induced dry eye in a rat model using transduced PEP-1-FK506BP. After the topical application of PEP-1-FK506BP, tear volumes were markedly increased and significant prevention of cornea damage was observed compared with dry eye rats. Further, immunohistochemical analysis demonstrated that PEP-1-FK506BP markedly prevented damage to the cornea, the bulbar conjunctiva, and the palpebral conjunctiva epithelial lining compared with dry eye rats. In addition, caspase-3 and PARP expression levels were found to be decreased. These results demonstrated that topical application of PEP-1-FK506BP significantly ameliorates dry eye injury in an animal model. Thus, we suggest that PEP-1-FK506BP can be developed as a new ophthalmic drop to treat dry eye diseases.


Assuntos
Modelos Animais de Doenças , Síndromes do Olho Seco/tratamento farmacológico , Proteínas de Ligação a Tacrolimo/uso terapêutico , Animais , Masculino , Ratos , Ratos Sprague-Dawley
5.
BMB Rep ; 47(10): 569-74, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24499676

RESUMO

Heme oxygenase-1 (HO-1) degrades heme to carbon dioxide, biliverdin, and Fe2+, which play important roles in various biochemical processes. In this study, we examined the protective function of HO-1 against oxidative stress in SH-SY5Y cells and in a Parkinson's disease mouse model. Western blot and fluorescence microscopy analysis demonstrated that PEP-1-HO-1, fused with a PEP-1 peptide can cross the cellular membranes of human neuroblastoma SH-SY5Y cells. In addition, the transduced PEP-1-HO-1 inhibited generation of reactive oxygen species (ROS) and cell death caused by 1-methyl-4-phenylpyridinium ion (MPP+). In contrast, HO-1, which has no ability to transduce into SH-SY5Y cells, failed to reduce MPP+-induced cellular toxicity and ROS production. Furthermore, intraperitoneal injected PEP-1-HO-1 crossed the blood-brain barrier in mouse brains. In a PD mouse model, PEP-1-HO-1 significantly protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity and dopaminergic neuronal death. Therefore, PEP-1-HO-1 could be a useful agent in treating oxidative stress induced ailments including PD.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Heme Oxigenase-1/uso terapêutico , Degeneração Neural/prevenção & controle , Doença de Parkinson/tratamento farmacológico , Proteínas Recombinantes de Fusão/uso terapêutico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/efeitos dos fármacos , Heme Oxigenase-1/farmacologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Degeneração Neural/complicações , Degeneração Neural/patologia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Proteínas Recombinantes de Fusão/farmacologia , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Fatores de Tempo , Transdução Genética
6.
J Microbiol Biotechnol ; 20(11): 1534-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21124059

RESUMO

Fed-batch cultures of Hansenula polymorpha were studied to develop an efficient biosystem to produce recombinant human serum albumin (HSA). To comply with this purpose, we used high purity oxygen supplying strategy to increase viable cell density in a bioreactor and enhance the production of target protein. A mutant strain, H. polymorpha GOT7 was utilized in this study as a host strain in both 5-L and 30-L scale fermentors. To supply high purity oxygen into a bioreactor, nearly 100 % high purity oxygen from commercial bomb or higher than 93 % oxygen available in-situ from a pressure swing adsorption oxygen generator (PSA) was employed. Under the optimal fermentation of H. polymorpha with high purity oxygen, the final cell densities and produced HSA concentrations were 24.6 g/L and 5.1 g/L in the 5-L fermentor, and 24.8 g/L and 4.5 g/L in the 30-L fermentor, respectively. These were about 2-10 times higher than those obtained in air-based fed-batch fermentations. The discrepancies between the 5-L and 30-L fermentors with air supply were presumably due to the higher contribution of surface aeration over submerged aeration in the 5-L fermentor. This study, therefore, proved the positive effect of high purity oxygen to enhance viable cell density as well as target recombinant protein production in microbial fermentations.


Assuntos
Oxigênio/metabolismo , Pichia/metabolismo , Albumina Sérica/biossíntese , Reatores Biológicos/microbiologia , Fermentação , Humanos , Pichia/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Albumina Sérica/genética
7.
Small ; 4(1): 143-52, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18189246

RESUMO

Uniformly sized silica-coated magnetic nanoparticles (magnetite@silica) are synthesized in a simple one-pot process using reverse micelles as nanoreactors. The core diameter of the magnetic nanoparticles is easily controlled by adjusting the w value ([polar solvent]/[surfactant]) in the reverse-micelle solution, and the thickness of the silica shell is easily controlled by varying the amount of tetraethyl orthosilicate added after the synthesis of the magnetite cores. Several grams of monodisperse magnetite@silica nanoparticles can be synthesized without going through any size-selection process. When crosslinked enzyme molecules form clusters on the surfaces of the magnetite@silica nanoparticles, the resulting hybrid composites are magnetically separable, highly active, and stable under harsh shaking conditions for more than 15 days. Conversely, covalently attached enzymes on the surface of the magnetite@silica nanoparticles are deactivated under the same conditions.


Assuntos
Magnetismo , Nanopartículas/química , Nanopartículas/ultraestrutura , Dióxido de Silício/química , Catálise , Reagentes de Ligações Cruzadas/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Difração de Raios X
8.
Biotechnol Bioeng ; 96(2): 210-8, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16986168

RESUMO

alpha-chymotrypsin (CT) and lipase (LP) were immobilized in hierarchically-ordered mesocellular mesoporous silica (HMMS) in a simple but effective way for the enzyme stabilization, which was achieved by the enzyme adsorption followed by glutaraldehyde (GA) crosslinking. This resulted in the formation of nanometer scale crosslinked enzyme aggregates (CLEAs) entrapped in the mesocellular pores of HMMS (37 nm), which did not leach out of HMMS through narrow mesoporous channels (13 nm). CLEA of alpha-chymotrypsin (CLEA-CT) in HMMS showed a high enzyme loading capacity and significantly increased enzyme stability. No activity decrease of CLEA-CT was observed for 2 weeks under even rigorously shaking condition, while adsorbed CT in HMMS and free CT showed a rapid inactivation due to the enzyme leaching and presumably autolysis, respectively. With the CLEA-CT in HMMS, however, there was no tryptic digestion observed suggesting that the CLEA-CT is not susceptible to autolysis. Moreover, CLEA of lipase (CLEA-LP) in HMMS retained 30% specific activity of free lipase with greatly enhanced stability. This work demonstrates that HMMS can be efficiently employed as host materials for enzyme immobilization leading to highly enhanced stability of the immobilized enzymes with high enzyme loading and activity.


Assuntos
Reagentes de Ligações Cruzadas/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Dióxido de Silício/química , Quimotripsina/química , Lipase/química , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...