Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(23): e2200818, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35485322

RESUMO

2D transition metal dichalcogenides (TMDCs) have revealed great promise for realizing electronics at the nanoscale. Despite significant interests that have emerged for their thermoelectric applications due to their predicted high thermoelectric figure of merit, suitable doping methods to improve and optimize the thermoelectric power factor of TMDCs have not been studied extensively. In this respect, molecular charge-transfer doping is utilized effectively in TMDC-based nanoelectronic devices due to its facile and controllable nature owing to a diverse range of molecular designs available for modulating the degree of charge transfer. In this study, the power of molecular charge-transfer doping is demonstrated in controlling the carrier-type (n- and p-type) and thermoelectric power factor in platinum diselenide (PtSe2 ) nanosheets. This, combined with the tunability in the band overlap by changing the thickness of the nanosheets, allows a significant increase in the thermoelectric power factor of the n- and p-doped PtSe2 nanosheets to values as high as 160 and 250 µW mK-2 , respectively. The methodology employed in this study provides a simple and effective route for the molecular doping of TMDCs that can be used for the design and development of highly efficient thermoelectric energy conversion systems.

2.
Nanomaterials (Basel) ; 11(9)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34578760

RESUMO

We studied the variation in electrical conductivity of exfoliated RuO2 nanosheets and the modulation in the contact resistance of individual nanosheet devices using charge transfer doping effects based on surface metal nanoparticle decorations. The electrical conductivity in the monolayer and bilayer RuO2 nanosheets gradually increased due to the surface decoration of Cu, and subsequently Ag, nanoparticles. We obtained contact resistances between the nanosheet and electrodes using the four-point and two-point probe techniques. Moreover, the contact resistances decreased during the surface decoration processes. We established that the surface decoration of metal nanoparticles is a suitable method for external contact engineering and the modulation of the internal properties of nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...