Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Clin Nutr ; 104(4): 1014-1022, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27604771

RESUMO

BACKGROUND: Excess body fat diminishes muscle protein synthesis rates in response to hyperinsulinemic-hyperaminoacidemic clamps. However, muscle protein synthetic responses after the ingestion of a protein-dense food source across a range of body mass indexes (BMIs) have not been compared. OBJECTIVE: We compared the myofibrillar protein synthetic response and underlying nutrient-sensing mechanisms after the ingestion of lean pork between obese, overweight, and healthy-weight adults. DESIGN: Ten healthy-weight [HW; BMI (in kg/m2): 22.7 ± 0.4], 10 overweight (OW; BMI: 27.1 ± 0.5), and 10 obese (OB; BMI: 35.9 ± 1.3) adults received primed continuous l-[ring-13C6]phenylalanine infusions. Blood and muscle biopsy samples were collected before and after the ingestion of 170 g pork (36 g protein and 3 g fat) to assess skeletal muscle anabolic signaling, amino acid transporters [large neutral and small neutral amino acid transporters (LAT1, SNAT2) and CD98], and myofibrillar protein synthesis. RESULTS: At baseline, OW and OB groups showed greater relative amounts of mammalian target of rapamycin complex 1 (mTORC1) protein than the HW group. Pork ingestion increased mTORC1 phosphorylation only in the HW group (P = 0.001). LAT1 and SNAT2 protein content increased during the postprandial period in all groups (time effect, P < 0.05). Basal myofibrillar protein synthetic responses were similar between groups (P = 0.43). However, myofibrillar protein synthetic responses (0-300 min) were greater in the HW group (1.6-fold; P = 0.005) after pork ingestion than in the OW and OB groups. CONCLUSIONS: There is a diminished myofibrillar protein synthetic response to the ingestion of protein-dense food in overweight and obese adults compared with healthy-weight controls. These data indicate that impaired postprandial myofibrillar protein synthetic response may be an early defect with increasing fat mass, potentially dependent on altered anabolic signals, that reduces muscle sensitivity to food ingestion. This trial was registered at clinicaltrials.gov as NCT02613767.


Assuntos
Tecido Adiposo/metabolismo , Índice de Massa Corporal , Proteínas Alimentares/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Adiposidade , Adulto , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Dieta , Ingestão de Energia , Feminino , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Sobrepeso , Período Pós-Prandial , Carne Vermelha , Valores de Referência , Suínos , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem
2.
J Phys Condens Matter ; 28(3): 034001, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26703817

RESUMO

The synthesis of germanane (GeH) has opened the door for covalently functionalizable 2D materials in electronics. Herein, we demonstrate that GeH can be electronically doped by incorporating stoichiometric equivalents of phosphorus dopant atoms into the CaGe2 precursor. The electronic properties of these doped materials show significant atmospheric sensitivity, and we observe a reduction in resistance by up to three orders of magnitude when doped samples are measured in water-containing atmospheres. This variation in resistance is a result of water activation of the phosphorus dopants. Transport measurements in different contact geometries show a significant anisotropy between in-plane and out-of-plane resistances, with a much larger out-of-plane resistance. These measurements along with finite element modeling results predict that the current distribution in top-contacted crystals is restricted to only the topmost, water activated crystal layers. Taken together, these results pave the way for future electronic and optoelectronic applications utilizing group IV graphane analogues.

3.
Rev Sci Instrum ; 85(12): 123702, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25554296

RESUMO

Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...