Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 48(9): 4672-80, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24738662

RESUMO

Metal contamination from Space Shuttle launch activity was examined using inductively coupled plasma-atomic emission spectroscopy in a two-tier study sampling surface water collected from several sites at the Kennedy Space Center (KSC) and associated Merritt Island National Wildlife Refuge in east central Florida. The primary study examined both temporal changes in baseline metal concentrations (19 metals) in surface water (1996 to 2009, 11 sites) samples collected at specific long-term monitoring sites and metal deposition directly associated with Space Shuttle launch activity at two Launch Complexes (LC39A and LC39B). A secondary study examined metal concentrations at additional sites and increased the amount of elements measured to 48 elements. Our examination places a heavy focus on those metals commonly associated with launch operations (e.g., Al, Fe, Mn, and Zn), but a brief discussion of other metals (As, Cu, Mo, Ni, and Pb) is also included. While no observable accumulation of metals occurred during the time period of the study, the data obtained postlaunch demonstrated a dramatic increase for Al, Fe, Mn, and Zn. Comparing overall trends between the primary and secondary baseline surface water concentrations, elevated concentrations were generally observed at sampling stations located near the launch complexes and from sites isolated from major water systems. While there could be several natural and anthropogenic sources for metal deposition at KSC, the data in this report indicate that shuttle launch events are a significant source.


Assuntos
Monitoramento Ambiental/métodos , Metais/análise , Voo Espacial , Poluentes Químicos da Água/análise , Calibragem , Florida , Padrões de Referência , Espectrofotometria Atômica
2.
Anal Chem ; 74(10): 2416-22, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12038769

RESUMO

This paper describes synthetic micropore and nanotube membranes that mimic the function of a ligand-gated ion channel; that is, these membranes can be switched from an "off" state (no or low ion current through the membrane) to an "on" state (higher ion current) in response to the presence of a chemical stimulus. Ion channel mimics based on both microporous alumina and Au nanotube membranes were investigated. The off state was obtained by making the membranes hydrophobic by chemisorbing either a C18 silane (alumina membrane) or a C18 thiol (Au nanotube membrane). Water and electrolyte are forbidden from entering these very hydrophobic pores/nanotubes. The transition to the on state was induced by the partitioning of a hydrophobic ionic species (e.g., a drug or a surfactant) into the membrane. The membrane switches to the on state because at a sufficiently high concentration of this ionic analyte species, the pores/nanotubes flood with water and electrolyte. A pH-responsive membrane was also prepared by attaching a hydrophobic alkyl carboxylic acid silane to the alumina membrane.


Assuntos
Técnicas Biossensoriais/instrumentação , Canais Iônicos , Membranas Artificiais , Técnicas Biossensoriais/métodos , Interações Hidrofóbicas e Hidrofílicas , Mimetismo Molecular , Nanotecnologia , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...