Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(9): 6072-6084, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38370453

RESUMO

In this study, we synthesized and characterized four tetraphenylethene (TPE) analogs, investigated their photophysical properties, and conducted quantum chemical calculations. Some molecules exhibited aggregation-induced emission enhancement behavior and showed efficient emission in both solid and solution states. Solvatochromism was observed in particular derivatives, with solvent polarity influencing either a bathochromic or hypsochromic shift, indicating the occurrence of photoinduced intramolecular charge transfer (ICT) processes. Quantum chemical calculations confirmed that variations in molecular packing and rigidity among the TPE analogs contributed to their diverse behavior. The study showcases aggregation in luminophores without significant impact on the excited state and highlights how minor alterations in terminal substituents can lead to unconventional behavior. These findings have implications for the development of luminescent materials. Furthermore, the synthesized compounds exhibited biocompatibility, suggesting their potential for cell imaging applications.

2.
J Biomol Struct Dyn ; : 1-19, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318002

RESUMO

Anti-SARS-CoV-2 drugs are urgently needed to prevent the pandemic and for immunization. Their protease inhibitor treatment for COVID-19 has been used in clinical trials. In Calu-3 and THP1 cells, 3CL SARS-CoV-2 Mpro protease is required for viral expression, replication, and the activation of the cytokines IL-1, IL-6, and TNF-. The Mpro structure was chosen for this investigation because of its activity as a chymotrypsin-like enzyme and the presence of a cysteine-containing catalytic domain. Thienopyridine derivatives increase the release of nitric oxide from coronary endothelial cells, which is an important cell signaling molecule with antibacterial activity against bacteria, protozoa, and some viruses. Using DFT calculations, global descriptors are computed from HOMO-LUMO orbitals; the molecular reactivity sites are analyzed from an electrostatic potential map. NLO properties are calculated, and topological analysis is also part of the QTAIM studies. Both compounds 1 and 2 were designed from the precursor molecule pyrimidine and exhibited binding energies (-14.6708 kcal/mol and -16.4521 kcal/mol). The binding mechanisms of molecule 1 towards SARS-COV-2 3CL Mpro exhibited strong hydrogen bonding as well as Vdw interaction. In contrast, derivative 2 was bound to the active site protein's active studied that several residues and positions, including (His41, Cys44, Asp48, Met49, Pro52, Tyr54, Phe140, Leu141, Ser144, His163, Ser144, Cys145, His164, Met165, Glu166, Leu167, Asp187, Gln189, Thr190, and GLn192) are critical for the maintenance of inhibitors inside the active pocket. Molecular docking and 100 ns MD simulation analysis revealed that Both compounds 1 and 2 with higher binding affinity and stability toward the SARS-COV-2 3CL Mpro protein. Binding free energy calculations and other MD parameters support the finding.Communicated by Ramaswamy H. Sarma.

3.
Sci Rep ; 12(1): 15674, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123356

RESUMO

We present here the FT-IR, DFT computation, XRD, optical, and photophysical characterization of a heterocyclic compound with thienopyrimidine and pyran moieties. TD-DFT/DMOl3 and TD-DFT/CASTEP computations were used to study the geometry of isolated and dimer molecules and their optical behavior. The indirect (3.93 eV) and direct (3.29 eV) optical energy bandgaps, HOMO-LUMO energy gap (3.02 eV), and wavelength of maximum absorption (353 nm) were determined in the gas phase with M062X/6-31+G (d, p). A thin film of the studied molecule was studied using XRD, FT-IR, and UV-Vis spectroscopy. The average crystallite size was found as 74.95 nm. Also, the photoluminescence spectroscopy revealed that the compound exhibited different emission bands at the visible range with different intensities depending on the degree of molecular aggregation. For instance, solutions with different concentrations emitted blue, cyan, and green light. On the other hand, the solid-state material produced a dual emission with comparable intensities at λmax = 455, 505, and 621 nm to cover the entire visible range and produce white emission from a single material with CIE coordinates of (0.34, 0.32) that are very similar to the ideal pure white light. Consequently, these findings could lead to the development of more attractive new luminous materials.

4.
ACS Omega ; 7(17): 15016-15026, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557695

RESUMO

Heterocyclic compounds with effective solid-state luminescence offer a wide range of uses. It has been observed that combining pyrimidine and indole moieties in a single molecule can enhance material behavior dramatically. Here, different heterocyclic compounds with indole and pyrimidine moieties have been synthesized effectively, and their structures have been validated using NMR, IR, and mass spectroscopy. The photoluminescence behavior of two substances was investigated in powder form and solutions of varying concentrations. After aggregation, one molecule displayed a redshifted luminescence spectrum, whereas another homolog showed a blueshift. Thus, density functional theory calculations were carried out to establish that introducing a terminal group allows modifying of the luminescence behavior by altering the molecular packing. Because of the non-planarity, intermolecular interactions, and tiny intermolecular distances within the dimers, the materials demonstrated a good emission quantum yield (Φem) in the solid state (ex. 25.6%). At high temperatures, the compounds also demonstrated a stable emission characteristic.

5.
ACS Omega ; 7(12): 10178-10186, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382296

RESUMO

Schiff bases represent an essential class in organic chemistry with antitumor, antiviral, antifungal, and antibacterial activities. The synthesis of Schiff bases requires the presence of an organic base as a catalyst such as piperidine. Base-free synthesis of organic compounds using a heterogeneous catalyst has recently attracted more interest due to the facile procedure, high yield, and reusability of the used catalyst. Herein, we present a comparative study to synthesize new Schiff bases containing indole moieties using piperidine as an organic base catalyst and Au@TiO2 as a heterogeneous catalyst. In both methods, the products were isolated in high yields and fully characterized using different spectral analysis techniques. The catalyst was reusable four times, and the activity was slightly decreased. The presence of Au increases the number of acidic sites of TiO2, resulting in C=O polarization. Yields of the prepared Schiff bases in the presence of Au@TiO2 and piperidine were comparable. However, Au@TiO2 is an easily separable and recyclable catalyst, which would facilitate the synthesis of organic compounds without applying any hazardous materials. Furthermore, the luminescence behavior of the synthesized Schiff bases exhibited spectral shape dependence on the substituent group. Interestingly, the compounds also displayed deep-blue fluorescence with Commission Internationale de l'Éclairage (CIE) coordinates of y < 0.1. Thus, these materials may contribute to decreasing the energy consumption of the emitting devices.

6.
ACS Omega ; 5(46): 29988-30000, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33251435

RESUMO

Biocompatible luminogens with aggregation-induced emission (AIE) have several applications in the biology field, such as in detecting biomacromolecules bioprobes and in bio-imaging. Due to their bioactivities and light-emitting properties, many heterocyclic compounds are good candidates for such applications. However, heterocyclic π-conjugated systems with AIE behavior remain rare as strong intermolecular π-π interactions usually quench their emission. In this work, new thienopyrimidine heterocyclic compounds were synthesized and their structures were verified by elemental analysis and Fourier transform infrared (FT-IR), 1H nuclear magnetic resonance (NMR), and 13C NMR spectra. The photophysical properties of some compounds were investigated in the solution and solid states. Density functional theory calculations were also performed to confirm the observed photophysical properties of the compounds. The studied dyes displayed AIE properties with spectral shapes related to the aggregate structure and a quantum yield up to 10.8%. The emission efficiency of the powder is attributed to the incorporation of multiply rotatable and twisted aryl groups to the fused heterocyclic moieties. The dyes also showed high thermal stability and potent antimicrobial activities against numerous bacterial and fungal strains. Additionally, the cytotoxicity of the new compounds was evaluated against the Caco-2 cell line, and molecular docking was used to investigate the binding conformation of the most effective compound with the MNK2 enzyme. Therefore, the presented structures may potentially be used for bioapplications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...