Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 2): 124766, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37164132

RESUMO

The conditions of production of multiple W/O/W nanoemulsions containing sesamol and retinol were optimized using response surface methodology (RSM). Span 80 (5, 10, and 15 % w/v), Tween 80 (1, 5.5, and 10 % w/v), and water in oil ratio (W/O) (20, 30, and 40 %) were considered as independent variables while encapsulation efficiency (EE%) and particle size were taken as dependent variables. Alginate (Alg) and chitosan (CS) were also applied to form a deposit layer. An optimum sample with an EE of 92.93 % and particle size of 381.94 nm was produced when Tween 80, Span 80, and W/O were 6.24 %, 10.84 %, and 37.70 %, respectively. Based on the Fourier transform infrared spectroscopy (FTIR), detection of hydrophobic band (2899 cm-1) approved the physical entrapment of biomolecules. Differential scanning calorimetry (DSC) indicated an endothermic peak at 236.48 °C associated with the ionic interactions of Alg-CS. Confocal laser scanning microscopy (CLSM) indicated Alg-CS complex deposit layer formed by electrostatic attraction surrounding the W/O/W multiple layers. The in vitro release of sesamol and retinol was 39 % of sesamol and 22 % of retinol in simulated gastric fluid (SGF) and 56 % and 22 % in simulated intestinal fluid (SIF), respectively.


Assuntos
Quitosana , Polissorbatos , Polissorbatos/química , Vitamina A , Quitosana/química , Alginatos/química , Emulsões/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...