Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Sci ; 35(4): 385-391, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30971635

RESUMO

Herein, an efficient chemiluminescence (CL) reaction with a high emission intensity is reported based on a synergistic improving effect of silver nanoclusters (AgNCs) and graphene quantum dots (GQDs). First, the syntheses of AgNCs and GQDs were simply performed by the chemical reducing of AgNO3 and a thermal treatment of glucose, respectively. After the characterization steps, the beneficial behavior of the prepared nanomaterial was investigated in CL systems. The oxidation reaction of KMnO4-rhodamine B produced weak CL emission. However, the presence of AgNCs and GQDs led to a synergetic enhancing effect, and thus higher emission was obtained. A possible mechanism was investigated for this effect using absorption and fluorescence experiments. Furthermore, rabeprazole showed a relatively selective enhancing impact on the CL emission. The CL intensity was linearly increased in the rabeprazole concentration range of 4 - 133 ng mL-1 with a detection limit (3Sb/m) of 1.1 ng mL-1. The developed CL method was utilized for the measurement of Rbp in biological samples with acceptable precision and accuracy.


Assuntos
Grafite/química , Medições Luminescentes , Nanopartículas Metálicas/química , Pontos Quânticos/química , Rabeprazol/análise , Prata/química , Tamanho da Partícula , Propriedades de Superfície
2.
Luminescence ; 34(2): 261-271, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30724006

RESUMO

A novel and sensitive chemiluminescence (CL) procedure based on the synergetic catalytic effects of gold nanoclusters (Au NCs) and graphene quantum dots (GQDs) was developed for the reliable measurement of cimetidine (CM). The initial experiments showed that the KMnO4 -based oxidation of alkaline rhodamine B (RhoB) generated a very weak CL emission, which was intensively enhanced in the simultaneous presence of Au NCs and GQDs. CL intermediates can be adsorbed and gathered on the surface of Au NCs, becoming more stable. GQDs participate in the energy transferring processes and facilitate them. These improving effects were simultaneously obtained by adding both Au NCs and GQDs into the RhoB-KMnO4 reaction. Consequently, the increasing effect of the Au NCs/GQDs mixture was more than that of pure Au NCs or GQDs, and a new nano-assisted powerful CL system was achieved. Furthermore, a marked quenching in the emission of the introduced CL system was observed in the presence of CM, so the system was examined to design a sensitive sensor for CM. After optimization of influencing parameters, the linear lessening in CL emission intensity of KMnO4 -RhoB-Au NCs/GQDs was verified for CM concentrations in the range 0.8-200 ng ml-1 . The limit of detection (3Sb /m) was 0.3 ng ml-1 . Despite being a simple CL method, good sensitivity was obtained for CM detection with reliable results for CM determination in human urine samples.


Assuntos
Cimetidina/análise , Ouro/química , Grafite/química , Medições Luminescentes , Nanopartículas Metálicas/química , Pontos Quânticos/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...