Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Chim Acta ; 557: 117857, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484908

RESUMO

BACKGROUND: The prevalence of type 2 diabetes mellitus (T2DM), a progressive metabolic disorder characterized by chronic hyperglycemia and the development of insulin resistance, has increased globally, with worrying statistics coming from children, adolescents, and young adults from developing countries like India. Here, we investigated unique circulating metabolic signatures associated with prediabetes and T2DM in an Indian cohort using NMR-based metabolomics. MATERIALS AND METHODS: The study subjects included healthy volunteers (N = 101), prediabetic subjects (N = 75), and T2DM patients (N = 108). Serum metabolic profiling was performed using 1H NMR spectroscopy and major perturbed metabolites were identified by multivariate analysis and receiver operating characteristic (ROC) modules. RESULTS: Of the 36 aqueous abundant metabolites, 24 showed a statistically significant difference between healthy volunteers, prediabetics, and established T2DM subjects. On performing multivariate ROC curve analysis with 5 commonly dysregulated metabolites (namely, glucose, pyroglutamate, o-phosphocholine, serine, and methionine) in prediabetes and T2DM, AUC values obtained were 0.96 (95 % confidence interval (CI) = 0.93, 0.98) for T2DM; and 0.88 (95 % CI = 0.81, 0.93) for prediabetic subjects, respectively. CONCLUSION: We propose that the identified metabolite panel can be used in the future as a biomarker for clinical diagnosis, patient surveillance, and for predicting individuals at risk for developing diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Adolescente , Criança , Adulto Jovem , Humanos , Estado Pré-Diabético/diagnóstico , Hemoglobinas Glicadas , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Biomarcadores
2.
J Pharm Biomed Anal ; 235: 115605, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37531734

RESUMO

Ion channels and transporters play key roles in various biological processes, including cell proliferation and programmed cell death. Recently, we reported that 2,4-dinitrobenzene-sulfonyl-protected N1,N3-dihexy-2-hydroxyisophthalamide (1) forms ion channels upon activation by glutathione (GSH) and results in the induction of apoptosis by depleting the intracellular GSH reservoir in cancer cells. However, the detailed molecular events leading to the induction of apoptosis by these synthetic transport systems in cancer cells still need to be uncovered. Along these lines, we investigated the alterations in cellular metabolites and the associated metabolic pathways by performing untargeted global metabolic profiling of breast cancer cells - MCF-7 - using 1H NMR-based metabolomics. The evaluation of spectral profiles from MCF-7 cells exposed to 1 and their comparison with those corresponding to untreated (control) cells identified 14 significantly perturbed signature metabolites. These metabolites belonged mostly to antioxidant defence, energy metabolism, amino acid biosynthesis, and lipid metabolism pathways and included GSH, o-phosphocholine, malate, and aspartate, to name a few. These results would help us gain deeper insights into the molecular mechanism underlying 1-mediated cytotoxicity of MCF-7 cells and eventually help identify potential novel therapeutic targets for more effective cancer management.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Metabolômica/métodos , Células MCF-7 , Apoptose , Glutationa/metabolismo
3.
Sci Rep ; 10(1): 6268, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286457

RESUMO

Cold-induced sweetening (CIS) causes considerable losses to the potato processing industry wherein the selection of potato genotypes using biochemical information has found to be advantageous. Here, 1H NMR spectroscopy was performed to identify metabolic perturbations from tubers of five potato cultivars (Atlantic, Frito Lay-1533, Kufri Jyoti, Kufri Pukhraj, and PU1) differing in their CIS ability and processing characteristics at harvest and after cold storage (4 °C). Thirty-nine water-soluble metabolites were detected wherein significantly affected metabolites after cold storage were categorized into sugars, sugar alcohols, amino acids, and organic acids. Multivariate statistical analysis indicated significant differences in the metabolic profiles among the potato cultivars. Pathway enrichment analysis revealed that carbohydrates, amino acids, and organic acids are the key players in CIS. Interestingly, one of the processing cultivars, FL-1533, exhibited a unique combination of metabolites represented by low levels of glucose, fructose, and asparagine accompanied by high citrate levels. Conversely, non-processing cultivars (Kufri Pukhraj and Kufri Jyoti) showed elevated glucose, fructose, and malate levels. Our results indicate that metabolites such as glucose, fructose, sucrose, asparagine, glutamine, citrate, malate, proline, 4-aminobutyrate can be potentially utilized for the prediction, selection, and development of potato cultivars for long-term storage, nutritional, as well as processing attributes.


Assuntos
Metabolismo dos Carboidratos , Carboidratos/análise , Armazenamento de Alimentos , Tubérculos/química , Refrigeração , Solanum tuberosum/química , Valor Nutritivo
4.
Angew Chem Int Ed Engl ; 59(20): 7944-7952, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32048775

RESUMO

Cancer cells use elevated glutathione (GSH) levels as an inner line of defense to evade apoptosis and develop drug resistance. In this study, we describe a novel 2,4-nitrobenzenesulfonyl (DNS) protected 2-hydroxyisophthalamide system that exploits GSH for its activation into free 2-hydroxyisophthalamide forming supramolecular M+ /Cl- channels. Better permeation of the DNS protected compound into MCF-7 cells compared to the free 2-hydroxyisophthalamide and GSH-activatable ion transport resulted in higher cytotoxicity, which was associated with increased oxidative stress that further reduced the intracellular GSH levels and altered mitochondrial membrane permeability leading to the induction of the intrinsic apoptosis pathway. The GSH-activatable transport-mediated cell death was further validated in rat insulinoma cells (INS-1E); wherein the intracellular GSH levels showed a direct correlation to the resulting cytotoxicity. Lastly, the active compound was found to restrict the growth and proliferation of 3D spheroids of MCF-7 cells with efficiency similar to that of the anticancer drug doxorubicin.


Assuntos
Apoptose/efeitos dos fármacos , Canais de Cloreto/metabolismo , Glutationa/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Animais , Benzenossulfonatos/química , Benzenossulfonatos/metabolismo , Benzenossulfonatos/farmacologia , Proliferação de Células/efeitos dos fármacos , Humanos , Células MCF-7 , Ratos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia
5.
J Bacteriol ; 201(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31138627

RESUMO

Mycobacterium smegmatis, the saprophytic soil mycobacterium, is routinely used as a surrogate system to study the human pathogen Mycobacterium tuberculosis It has also been reported as an opportunistic pathogen in immunocompromised hosts. In addition, it can exist in several ecological setups, thereby suggesting its capacity to adapt to a variety of environmental cues. In this study, we employed untargeted proton nuclear magnetic resonance (1H-NMR)-based metabolomics to identify metabolites and metabolic pathways critical for early adaptive responses to acidic stress, oxidative stress, and nutrient starvation in Mycobacterium smegmatis We identified 31, 20, and 46 metabolites that showed significant changes in levels in response to acidic, oxidative, and nutrient starvation stresses, respectively. Pathway analyses showed significant perturbations in purine-pyrimidine, amino-acid, nicotinate-nicotinamide, and energy metabolism pathways. Besides these, differential levels of intermediary metabolites involved in α-glucan biosynthesis pathway were observed. We also detected high levels of organic osmolytes, methylamine, and betaine during nutrient starvation and oxidative stress. Further, tracing the differential levels of these osmolytes through computational search tools, gene expression studies (using reverse transcription-PCR [RT-PCR]), and enzyme assays, we detected the presence of a putative pathway of biosynthesis of betaine, methylamine, and dimethylamine previously unreported in Mycobacterium smegmatisIMPORTANCE Alterations in metabolite levels provide fast and direct means to regulate enzymatic reactions and, therefore, metabolic pathways. This study documents, for the first time, the metabolic changes that occur in Mycobacterium smegmatis as a response to three stresses, namely, acidic stress, oxidative stress, and nutrient starvation. These stresses are also faced by intracellular mycobacteria during infection and therefore may be extended to frame therapeutic interventions for pathogenic mycobacteria. In addition to the purine-pyrimidine, amino acid, nicotinate-nicotinamide, and energy metabolism pathways that were found to be affected in response to different stresses, a novel putative methylamine biosynthesis pathway was identified to be present in Mycobacterium smegmatis.


Assuntos
Aminas/metabolismo , Mycobacterium smegmatis/metabolismo , Aminas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Regulação Bacteriana da Expressão Gênica , Metabolômica , Metilação , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Estresse Oxidativo
6.
Metabolomics ; 15(4): 55, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30927092

RESUMO

INTRODUCTION: Chronic exposure to high-glucose and free fatty acids (FFA) alone/or in combination; and the resulting gluco-, lipo- and glucolipo-toxic conditions, respectively, have been known to induce dysfunction and apoptosis of ß-cells in Diabetes. The molecular mechanisms and the development of biomarkers that can be used to predict similarities and differences behind these conditions would help in easier and earlier diagnosis of Diabetes. OBJECTIVES: This study aims to use metabolomics to gain insight into the mechanisms by which ß-cells respond to excess-nutrient stress and identify associated biomarkers. METHODS: INS-1E cells were cultured in high-glucose, palmitate alone/or in combination for 24 h to mimic gluco-, lipo- and glucolipo-toxic conditions, respectively. Biochemical and cellular experiments were performed to confirm the establishment of these conditions. To gain molecular insights, abundant metabolites were identified and quantified using 1H-NMR. RESULTS: No loss of cellular viability was observed in high-glucose while exposure to FFA alone/in combination with high-glucose was associated with increased ROS levels, membrane damage, lipid accumulation, and DNA double-strand breaks. Forty-nine abundant metabolites were identified and quantified using 1H-NMR. Chemometric pair-wise analysis in glucotoxic and lipotoxic conditions, when compared with glucolipotoxic conditions, revealed partial overlap in the dysregulated metabolites; however, the dysregulation was more significant under glucolipotoxic conditions. CONCLUSION: The current study compared gluco-, lipo- and glucolipotoxic conditions in parallel and elucidated differences in metabolic pathways that play major roles in Diabetes. o-phosphocholine and UDP-N-acetylglucosamine were identified as common dysregulated metabolites and their ratio was proposed as a potential biomarker for these conditions.


Assuntos
Células Secretoras de Insulina/metabolismo , Fosforilcolina/análise , Uridina Difosfato N-Acetilglicosamina/análise , Animais , Apoptose , Biomarcadores/sangue , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/metabolismo , Glucose/efeitos adversos , Glucose/metabolismo , Células Secretoras de Insulina/fisiologia , Palmitatos/efeitos adversos , Palmitatos/metabolismo , Fosforilcolina/sangue , Ratos , Uridina Difosfato N-Acetilglicosamina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...