Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(2): 36, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38356031

RESUMO

Pulmonary drug delivery is a form of local targeting to the lungs in patients with respiratory disorders like cystic fibrosis, pulmonary arterial hypertension (PAH), asthma, chronic pulmonary infections, and lung cancer. In addition, noninvasive pulmonary delivery also presents an attractive alternative to systemically administered therapeutics, not only for localized respiratory disorders but also for systemic absorption. Pulmonary delivery offers the advantages of a relatively low dose, low incidence of systemic side effects, and rapid onset of action for some drugs compared to other systemic administration routes. While promising, inhaled delivery of therapeutics is often complex owing to factors encompassing mechanical barriers, chemical barriers, selection of inhalation device, and limited choice of dosage form excipients. There are very few excipients that are approved by the FDA for use in developing inhaled drug products. Depending upon the dosage form, and inhalation devices such as pMDIs, DPIs, and nebulizers, different excipients can be used to provide physical and chemical stability and to deliver the dose efficiently to the lungs. This review article focuses on discussing a variety of excipients that have been used in novel inhaled dosage forms as well as inhalation devices.


Assuntos
Asma , Excipientes , Humanos , Excipientes/farmacologia , Administração por Inalação , Nebulizadores e Vaporizadores , Asma/tratamento farmacológico , Pulmão , Preparações Farmacêuticas
2.
Int J Pharm ; 636: 122852, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934884

RESUMO

The current study aims to assess the use of nanocarriers to limit drug incompatibilities in clinical settings, and thus eliminating serious clinical consequences (e.g., catheter obstruction and embolism), and enhancing in vivo bioavailability and efficacy. As a proof-of-concept, the impact of loading well-documented physically incompatible drugs (i.e., furosemide and midazolam) into nanosized vesicles on in vitro stability and in vivo bioavailability of the two drugs was investigated. Furosemide and midazolam were loaded into nanosized spherical vesicles at high entrapment efficiency (ca. 62-69%). The drug-loaded vesicles demonstrated a sustained drug release patterns, high physical stability and negligible hemolytic activity. Physical incompatibility was assessed by exploiting microscopic technique coupled with image processing and analysis, dynamic light scattering and laser Doppler anemometry. Incorporation of drugs separately inside the nanosized vesicles dramatically decreased size and number of the precipitated particles. In vivo, the niosomal drug mixture demonstrated a significant improvement in pharmacokinetic profiles of furosemide and midazolam compared to the mixed free drug solutions, as evidenced by their longer circulation half-lives and higher area under the plasma-concentration time curves of both drugs. Nanocarriers could provide an auspicious strategy for circumventing drug incompatibilities, thus reducing adverse reactions, hospitalization period and improving therapeutic outcomes.


Assuntos
Furosemida , Midazolam , Lipossomos , Portadores de Fármacos , Disponibilidade Biológica
3.
Pharmaceutics ; 15(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36986858

RESUMO

Non-small cell lung cancer (NSCLC) is a global concern as one of the leading causes of cancer deaths. The treatment options for NSCLC are limited to systemic chemotherapy, administered either orally or intravenously, with no local chemotherapies to target NSCLC. In this study, we have prepared nanoemulsions of tyrosine kinase inhibitor (TKI), erlotinib, using the single step, continuous manufacturing, and easily scalable hot melt extrusion (HME) technique without additional size reduction step. The formulated nanoemulsions were optimized and evaluated for their physiochemical properties, in vitro aerosol deposition behavior, and therapeutic activity against NSCLC cell lines both in vitro and ex vivo. The optimized nanoemulsion showed suitable aerosolization characteristics for deep lung deposition. The in vitro anti-cancer activity was tested against the NSCLC A549 cell line which exhibited 2.8-fold lower IC50 for erlotinib-loaded nanoemulsion, as compared to erlotinib-free solution. Furthermore, ex vivo studies using a 3D spheroid model also revealed higher efficacy of erlotinib-loaded nanoemulsion against NSCLC. Hence, inhalable nanoemulsion can be considered as a potential therapeutic approach for the local lung delivery of erlotinib to NSCLC.

4.
Drug Deliv Transl Res ; 13(4): 1153-1168, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36585559

RESUMO

Rasagiline mesylate (RM) is a monoamine oxidase inhibitor that is commonly used to alleviate the symptoms of Parkinson's disease. However, it suffers from low oral bioavailability due to its extensive hepatic metabolism in addition to its hydrophilic nature which limits its ability to pass through the blood-brain barrier (BBB) and reach the central nervous system where it exerts its pharmacological effect. Thus, this study aims to form RM-loaded spanlastic vesicles for intranasal (IN) administration to overcome its hepatic metabolism and permit its direct delivery to the brain. RM-loaded spanlastics were prepared using thin film hydration (TFH) and modified spraying technique (MST). A 23 factorial design was constructed to study and optimize the effects of the independent formulation variables, namely, Span type, Span: Brij 35 ratio, and sonication time on the vesiclesá¾½ characteristics in each preparation technique. The optimized system prepared using MST (MST 2) has shown higher desirability factor with smaller PS and higher EE%; thus, it was selected for further in vivo evaluation where it revealed that the extent of RM distribution from the intranasally administered spanlastics to the brain was comparable to that of the IV drug solution with significantly high brain-targeting efficiency (458.47%). These results suggest that the IN administration of the optimized RM-loaded spanlastics could be a promising, non-invasive alternative for the efficient delivery of RM to brain tissues to exert its pharmacological activities without being dissipated to other body organs which subsequently may result in higher pharmacological efficiency and better safety profile.


Assuntos
Encéfalo , Portadores de Fármacos , Portadores de Fármacos/metabolismo , Tamanho da Partícula , Encéfalo/metabolismo , Administração Intranasal , Mesilatos/metabolismo , Mesilatos/farmacologia , Sistemas de Liberação de Medicamentos/métodos
5.
Int J Nanomedicine ; 17: 2995-3012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832117

RESUMO

Introduction: Damage to human skin occurs either chronologically or through repetitive exposure to ultraviolet (UV) radiation, where collagen photodegradation leads to the formation of wrinkles and skin imperfections. Consequently, cosmeceutical products containing natural bioactives to restore or regenerate collagen have gained a remarkable attention as an ameliorative remedy. Methods: This study aimed to develop and optimize collagen-loaded water-in-oil nanoemulsion (W/O NE) through a D-optimal mixture design to achieve an ideal multifunctional nanosystem containing active constituents. Vit E was included as a constituent of the formulation for its antioxidant properties to minimize the destructive impact of UV radiation. The formulated systems were characterized in terms of their globule size, optical clarity, and viscosity. An optimized system was selected and evaluated for its physical stability, in vitro wound healing properties, and in vivo permeation and protection against UV radiation. In addition, the effect of collagen-loaded NE was compared to Vit C-loaded NE and collagen-/Vit C-loaded NEs mixture as Vit C is known to enhance collagen production within the skin. Results: The optimized NE was formulated with 25% oils (Vit E: safflower oil, 1:3), 54.635% surfactant/cosurfactant (Span 80: Kolliphor EL: Arlasolve, 1:1:1), and 20.365% water. The optimized NE loaded with either collagen or Vit C exhibited a skin-friendly appearance with boosted permeability, and improved cell viability and wound healing properties on fibroblast cell lines. Moreover, the in vivo study and histopathological investigations confirmed the efficacy of the developed system to protect the skin against UV damage. The results revealed that the effect of collagen-/Vit C-loaded NEs mixture was more pronounced, as both drugs reduced the skin damage to an extent that it was free from any detectable alterations. Conclusion: NE formulated using Vit E and containing collagen and/or Vit C could be a promising ameliorative remedy for skin protection against UVB irradiation.


Assuntos
Cosmecêuticos , Raios Ultravioleta , Ácido Ascórbico/farmacologia , Colágeno/farmacologia , Cosmecêuticos/farmacologia , Emulsões/farmacologia , Humanos , Óleos , Pele , Raios Ultravioleta/efeitos adversos , Vitamina E/farmacologia , Água
6.
Drug Deliv ; 29(1): 62-74, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34964423

RESUMO

Diabetes mellitus is a challenging health problem. Salivary gland dysfunction is one of its complications. Current treatments possess numerous adverse effects. Therefore, herbal extracts have emerged as a promising approach for safe and effective treatment. However, they are required in large doses to achieve the desired effect. Accordingly, Origanum majorana extract (OE) was incorporated into nano-sized systems to enhance its biological effects at lower dosages. OE was standardized against rosmarinic acid (RA) and then loaded into nano-cubosomal (NC) systems via a 23 full-factorial design. Two optimum nano-systems at different drug loads (2.08 or 1.04 mg-RA/mL) were selected and assessed in vivo to compare their effects in streptozotocin-induced diabetic rats against conventional OE (2.08 mg-RA/mL). Blood glucose was evaluated weekly. Submandibular salivary glands were processed for histopathological examination and nuclear factor-erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), and p38-MAPK gene expression analysis. NC systems were successfully prepared and optimized where the optimum systems showed nano-sized vesicles (210.4-368.3 nm) and high zeta potential values. In vivo results showed a significant lower blood glucose in all treated groups, with an exceptional reduction with NC formulations. Marked histopathological improvement was observed in all OE-treated groups, with OE-NC4 (2.08 mg-RA/mL) demonstrating the best features. This was supported by RT-PCR; where the OE-NC4 group recorded the highest mean value of Nrf2 and the least mean values of Keap1 and p38-MAPK, followed by OE-NC3 and OE groups. In conclusion, OE-loaded NC enhanced the anti-hyperglycemic effect of OE and ameliorated diabetic gland alterations compared to conventional OE. Thus, cubosomal nano-systems could be anticipated as potential carriers for the best outcome with OE.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Origanum , Extratos Vegetais/farmacologia , Glândula Submandibular/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Química Farmacêutica , Portadores de Fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Masculino , Fator 2 Relacionado a NF-E2/genética , Nanoestruturas , Tamanho da Partícula , Distribuição Aleatória , Ratos , Estreptozocina/farmacologia , Propriedades de Superfície , Proteínas Quinases p38 Ativadas por Mitógeno/genética
7.
Drug Deliv ; 28(1): 1-9, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33322971

RESUMO

In this investigation, we focused on ceramide IIIB, a skin component whose depletion tends to augment multiple skin disorders and fungal infections. Ceramide IIIB was included into PEGylated surfactant-based vesicular phospholipid system to formulate 'PEGylated cerosomes' (PCs) loaded with fenticonazole nitrate (FTN). FTN is a potent antifungal agent adopted in the treatment of mixed mycotic and bacterial infections. The ceramide content of the vesicles may provide protective and regenerative skin activity whereas Brij®; the PEGylated surfactant, can enhance drug deposition and skin hydration. Both components are expected to augment the topical effect of FTN. PCs were prepared by thin-film hydration technique. A 23 full-factorial design was applied to study the effect of ceramide amount (X1), Brij type (X2) and Brij amount (X3) on the physicochemical properties of the formulated PCs namely; entrapment efficiency (EE%;Y1), particle size (PS;Y2), polydispersity index (PDI;Y3) and zeta potential (ZP;Y4). The optimal formula was selected for further in-vivo dermatokinetic and histopathological study. The optimal FTN-loaded PC (PC6) showed nanosized cerosomes (551.60 nm) with high EE% (83.00%w/w), and an acceptable ZP value of 20.90 mV. Transmission electron micrographs of the optimal formula illustrated intertwined tubulation form deviated from the conventional spherical vesicles. Finally, the dermatokinetic study of PC6 showed higher drug concentration and localization of FTN in skin layers when compared with FTN suspension and the histopathological study confirmed its safety for topical application. The overall findings of our study verified the effectiveness of utilizing PEGylated cerosomes to augment the activity of FTN as a topical antifungal agent.


Assuntos
Antifúngicos/administração & dosagem , Ceramidas/química , Portadores de Fármacos/química , Imidazóis/administração & dosagem , Polietilenoglicóis/química , Administração Cutânea , Animais , Antifúngicos/farmacocinética , Área Sob a Curva , Química Farmacêutica , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/farmacocinética , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Imidazóis/farmacocinética , Masculino , Taxa de Depuração Metabólica , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Ratos Wistar , Absorção Cutânea/efeitos dos fármacos , Propriedades de Superfície , Tensoativos
8.
Int J Nanomedicine ; 15: 7995-8018, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116514

RESUMO

PURPOSE: Zein/phospholipid composite nanoparticles (CNPs) were developed as a delivery platform for gallic acid (GA), a polyphenolic compound with reported preclinical antifibrotic activities. However, the therapeutic applicability of GA is hampered owing to its low bioavailability and rapid clearance. Accordingly, we developed GA-loaded CNPs. The effect of their size, surface charge and targeting strategies was investigated and optimized, with the aim of enhancing their ability to deliver GA to the activated hepatic stellate cells (aHSCs) in order to suppress hepatic fibrosis progression. METHODS: Different CNP systems were prepared and characterized with regard to their particle size, zeta potential, and GA entrapment efficiency (EE%). Also, they were statistically optimized via response surface methodology. The optimized systems were investigated with regard to their in vitro GA release, in vitro efficacy on aHSCs, and in vivo biodistribution in healthy rats. RESULTS: The GA-loaded cationic CNPs coupled with vitamin A (GA-CACNP/VA; 192 nm) showed high GA EE% (60% w/w), highest cellular internalization via active targeting, and more selective hepatic distribution, relative to free GA solution, GA-loaded anionic, and GA-loaded cationic systems. Furthermore, GA-CACNP/VA markedly triggered the apoptosis of aHSCs, repressed collagen deposition, and inhibited HSCs' activation to a lesser extent. CONCLUSION: The GA-CACNP/VA was shown to be a promising candidate for specific and controlled delivery of GA to aHSCs, which may provide an effective antifibrotic therapeutic approach.


Assuntos
Portadores de Fármacos/química , Ácido Gálico/química , Células Estreladas do Fígado/metabolismo , Nanopartículas/química , Fosfolipídeos/química , Vitamina A/química , Zeína/química , Animais , Apoptose/efeitos dos fármacos , Disponibilidade Biológica , Ácido Gálico/metabolismo , Ácido Gálico/farmacocinética , Ácido Gálico/farmacologia , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , Masculino , Tamanho da Partícula , Ratos , Propriedades de Superfície , Distribuição Tecidual
9.
Pharm Res ; 37(9): 180, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32875435

RESUMO

PURPOSE: Gallic acid (GA) is a polyphenolic compound with proven efficacy against hepatic fibrosis in experimental animals. However, it suffers from poor bioavailability and rapid clearance that hinders its clinical investigation. Accordingly, we designed and optimized reverse micelle-loaded lipid nanocapsules (RMLNC) using Box-Behnken design that can deliver GA directly into activated-hepatic stellate cells (aHSCs) aiming to suppress hepatic fibrosis progression. METHODS: GA-RMLNC was prepared using soft energy, solvent free phase inversion temperature method. Effects of formulation variables on particle size, zeta potential, entrapment efficiency (EE%) and GA release were studied. In-vivo biodistribution of GA-RMLNC in rats and in-vitro activities on aHSCs were also explored. RESULTS: Nano-sized GA-RMLNCs (30.35 ± 2.34 nm) were formulated with high GA-EE% (63.95 ± 2.98% w/w) and physical stability (9 months). The formulated system showed burst GA release in the first 2 h followed by sustained release profile. In-vivo biodistribution imaging revealed that RMLNC-loaded with rhodamine-B accumulated mainly in rats' livers. Relative to GA; GA-RMLNC displayed higher anti-proliferative activities, effective internalization into aHSCs, marked down-regulation in pro-fibrogenic biomarkers' expressions and elevated HSCs' apoptosis. CONCLUSIONS: These findings emphasize the promising application of RMLNC as a delivery system in hepatic fibrosis treatment, where successful delivery of GA into aHSCs was ensured via increased cellular uptake and antifibrotic activities.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Ácido Gálico/administração & dosagem , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Micelas , Nanocápsulas/administração & dosagem , Animais , Linhagem Celular Transformada , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Células Estreladas do Fígado/metabolismo , Lipídeos/administração & dosagem , Cirrose Hepática/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
10.
Adv Pharm Bull ; 10(3): 389-398, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32665897

RESUMO

Purpose: Eye drops' formulations of poorly water-soluble drugs, offer the advantage of crossing the lipophilic cornea, but their limited aqueous solubility may lead to low ocular bioavailability limiting their therapeutic uses. Terconazole (TZ) is an antifungal drug with low aqueous solubility, restricting its application in ocular fungal infection. Thus, the aim of the work in this study is to enhance TZ solubilization, permitting better ocular permeation and higher bioavailability. To achieve this goal, different self-nanoemulsifying systems (SNESs) were prepared using different oils, surfactants and co-surfactants. Methods: Ternary phase diagrams were constructed to identify self nano-emulsification regions for each oil system examined; either Labrafil® M2125CS or Capryol™ 90. TZ saturated solubility in the different formulated systems were measured and systems showing highest potential for TZ solubilization were selected. The optimized systems were chosen based on their globule size, polydispersity index, self-emulsification characteristics. Finally, TZ release as well as the irritation effect via Hen's Egg test-chorioallantoic membrane (HET-CAM test) of the optimized system was observed in vitro. Results: The optimized system was formulated using 20% w/w Labrafil® M2125 CS, 50% w/w Tween® 80 and 30% w/w Transcutol® HP. Oil globules showed size range of 15.13 nm and self-emulsification time of 12.80 seconds. The system released 100% of the drug within half an hour compared to 2 hours in case of TZ-suspension. Finally, HET-CAM test showed non-irritating response and normal vascularization of the chorioallantoic membrane. Conclusion: The formulated SNES could be a promising approach to enhance ocular efficacy of TZ.

11.
Drug Deliv Transl Res ; 10(3): 801-814, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31989414

RESUMO

Ocular drug administration is usually problematic and suffers low bioavailability due to several physiological and biological factors that hinder their effective treatment. Terconazole (TZ) is considered as one of the effective ocular antifungal agents that is usually administrated intravitreally for higher efficacy. The aim of the work in this study is to formulate a TZ-loaded ocular drug delivery system with high efficiency and good tolerability. First, TZ-loaded bile-based nanovesicles (BBNV) were prepared and the formulation variables (namely, Span 60, cholesterol, and sodium deoxycholate levels) were optimized based on the results of the entrapment efficiency (EE%), particle size (PS), and zeta potential (ZP) using Box-Behnken statistical design. The optimized system was formulated using 73.59 mg Span 60, 1.28 mg cholesterol, and 3.11 mg sodium deoxycholate. The formulated system showed vesicles with PS of 526 nm, - 42.2 mV ZP, and 93.86% EE%. TZ release, cellular uptake, and cytotoxicity of the optimized system were evaluated in vitro. In addition, in vivo assessment of its safety was conducted histopathologically and via ocular irritation test to ensure the ocular tolerance of the system. Afterwards, the optimized TZ-loaded BBNV was integrated into a self-nanoemulsifying system (SNES) to allow faster TZ release for immediate antifungal effect, enhanced ocular residence, and improved ocular permeation. TZ release study revealed more than 2 folds increment in drug release rate from the integrated system compared to BBNV alone. Finally, this integrated system was assessed for its antifungal activity in vivo where it demonstrated higher antifungal activity against induced Candida albicans infection. Graphical abstract.


Assuntos
Antifúngicos/administração & dosagem , Triazóis/administração & dosagem , Administração Oftálmica , Animais , Antifúngicos/química , Antifúngicos/farmacocinética , Disponibilidade Biológica , Linhagem Celular , Composição de Medicamentos , Emulsificantes/química , Humanos , Masculino , Modelos Animais , Nanopartículas , Tamanho da Partícula , Coelhos , Triazóis/química , Triazóis/farmacocinética
13.
Pharmaceutics ; 11(6)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31159447

RESUMO

: In this work, ultrahigh drug-loaded chitosan (Ch)/K-carrageenan (Kc) polyelectrolyte complex (PEC) beads were formed in situ by cross-linking in a glutaraldehyde-saturated atmosphere and were prepared on superhydrophobic substrates fabricated by spraying glass surfaces with ready-made spray for domestic use (NeverWet®). Verapamil hydrochloride (VP), a highly hydrophilic drug with a short biological half-life, was incorporated into a series of Ch-based and/or Ch/Kc-PEC-based beads to control its release profile in vivo. The formulation of VP-loaded beads was optimized using stepwise statistical designs based on a prespecified criterion. Several characteristics of the prepared beads, such as entrapment efficiency (EE%), in vitro drug release, swelling ratio, size and surface microstructure as well as molecular interactions between the drug and formulation ingredients, were investigated. In vivo pharmacokinetic (PK) studies were carried out using the rabbit model to study the ability of the optimized VP-loaded beads to control the absorption rate of VP. Results revealed that the prepared superhydrophobic substrates were able to fabricate VP-loaded beads with extremely high EE exceeding 90% w/w compared to only 27.80% when using conventional ionotropic gelation technique. PK results showed that the rate of VP absorption was well controlled following oral administration of the optimized beads to six rabbits compared to a marketed VP immediate release (IR) tablet, as evidenced by a 2.2-fold increase in mean residence time (MRT) and 5.24-fold extension in half value duration (HVD) over the marketed product without any observed reduction in the relative oral bioavailability.

14.
Drug Deliv ; 25(1): 1448-1460, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29902922

RESUMO

Controlled-release multiparticulate systems of hydrophilic drugs usually suffer from poor encapsulation and rapid-release rate. In the present study, ultra-high loaded controlled release polymeric beads containing verapamil hydrochloride (VP) as hydrophilic model drug were efficiently prepared using superamphiphobic substrates aiming to improve patient compliance by reducing dosing frequency. Superamphiphobic substrates were fabricated using clean aluminum sheets etched with ammonia solution and were treated with 1.5% (w/v) perfluorodecyltriethoxysilane (PFDTS) alcoholic solution. The effect of the main polymer type (lactide/glycolide (PLGA) 5004A, PLGA 5010, and polycaprolactone (PCL)), copolymer (Eudragit RS100) content together with the effect of drug load on encapsulation efficiency (EE%) and in vitro drug release was statistically studied and optimized via D-optimal statistical design. In vivo pharmacokinetic study was carried out to compare the optimized system relative to the market product (Isoptin®). Results revealed that superamphiphobic substrates were successfully prepared showing a rough micro-sized hierarchical structured surface upon observing with scanning electron microscope and were confirmed by high contact angles of 151.60 ± 2.42 and 142.80°±05.23° for water and olive oil, respectively. The fabricated VP-loaded beads showed extremely high encapsulation efficiency exceeding 92.31% w/w. All the prepared systems exhibited a controlled release behavior with Q12 h ranging between 5.46 and 95.90%w/w. The optimized VP-loaded system composed of 150 mg (1.5% w/v) PCL without Eudragit RS100 together with 160 mg VP showed 2.7-folds mean residence time compared to the market product allowing once daily administration instead of three times per day.


Assuntos
Preparações de Ação Retardada/química , Polímeros/química , Verapamil/química , Resinas Acrílicas/química , Animais , Liberação Controlada de Fármacos/efeitos dos fármacos , Ácido Láctico/química , Masculino , Microesferas , Tamanho da Partícula , Poliésteres/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Coelhos
15.
Eur J Pharm Sci ; 100: 142-154, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28089661

RESUMO

Ocular topically applied Vancomycin (VCM) suffers poor bioavailability due to its high molecular weight and hydrophilicity. In the present investigation, VCM-loaded polymeric nanoparticles (PNPs) were developed aiming to enhance its ocular bioavailability through prolonging its release pattern and ophthalmic residence. PNPs were prepared utilizing double emulsion (W/O/O), solvent evaporation technique. 23×41 full factorial design was applied to evaluate individual and combined influences of polymer type, Eudragit® RS100, sonication time, and Span®80 concentration on PNPs particle size, encapsulation efficiency, and zeta potential. Further, the optimized formulae were incorporated in 1% Carbopol®-based gel. In-vivo evaluation of the optimized formulae was performed via Draize test followed by microbiological susceptibility testing on albino rabbits. Results revealed successful formulation of VCM-loaded PNPs was achieved with particle sizes reaching 155nm and up to 88% encapsulation. Draize test confirmed the optimized formulae as non-irritating and safe for ophthalmic administration. Microbiological susceptibility testing confirmed prolonged residence, higher Cmax. with more than two folds increment in the AUC(0.25-24) of VCM-PNPs over control groups. Thus, VCM-loaded PNPs represent promising carriers with superior achievements for enhanced Vancomycin ophthalmic delivery over the traditional use of commercially available VCM parenteral powder after constitution into a solution by the ophthalmologists.


Assuntos
Antibacterianos , Portadores de Fármacos , Nanopartículas , Vancomicina , Resinas Acrílicas/química , Administração Oftálmica , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/toxicidade , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Composição de Medicamentos , Liberação Controlada de Fármacos , Géis , Concentração de Íons de Hidrogênio , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanopartículas/toxicidade , Coelhos , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/administração & dosagem , Vancomicina/química , Vancomicina/toxicidade
16.
Drug Dev Ind Pharm ; 42(11): 1752-62, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27093938

RESUMO

CONTEXT: A microbiological multidistrict-based survey from different Egyptian governorates was conducted to determine the most prevalent causative agents of ocular infections in the Egyptian population. Antibiotic sensitivity testing was then performed to identify the most potent antimicrobial agent. Vancomycin (VCM) proved the highest activity against gram-positive Staphylococcus bacteria, which are the most commonly isolated causative agents of ocular infection. However, topically applied VCM suffers from poor ocular bioavailability because of its high molecular weight and hydrophilicity. OBJECTIVE: The aim of the present study was to develop VCM-loaded solid lipid nanoparticles (SLNs) using water-in-oil-in-water (W/O/W) double emulsion, solvent evaporation technique to enhance ocular penetration and prolong ophthalmic residence of VCM. METHOD: Two consecutive full factorial designs (2(4) followed by 3(2)) were adopted to study the effect of different formulation and process parameters on SLN formulation. The lipid type and structure, polyvinyl alcohol (PVA) molecular weight and concentration, sonication time, as well as lipid:drug ratio were studied as independent variables. The formulated SLN formulae were evaluated for encapsulation efficiency (EE%), particle size (PS), and zeta potential as dependent variables. RESULTS: The statistically-optimized SLN formula (1:1 ratio of glyceryltripalmitate:VCM with 1% low molecular weight PVA and 1 min sonication time) had average PS of 277.25 nm, zeta potential of -20.45, and 19.99% drug encapsulation. Scanning and transmission electron micrographs showed well-defined, spherical, homogenously distributed particles. CONCLUSION: The present study suggests that VCM incorporation into SLNs is successfully achievable; however, further studies with different nanoencapsulation materials and techniques would be valuable for improving VCM encapsulation.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Olho/microbiologia , Lipídeos/química , Nanopartículas/química , Álcool de Polivinil/química , Vancomicina/administração & dosagem , Vancomicina/farmacologia , Olho/química , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Microbiológicos , Tamanho da Partícula , Sonicação , Vancomicina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...