Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3263-3269, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041088

RESUMO

Numerous studies show that Lonicera macranthoides and L. japonica have significant differences in organic matter. However, there is still a lack of research on inorganic elements between them. In this study, a non-targeted elemental metabolomics method was established by inductively coupled plasma mass spectrometry(ICP-MS), so as to compare the overall differences of inorganic elements between L. macranthoides and L. japonica. In addition, the differential markers were screened, and these differential markers were quantitatively analyzed by the targeted method. The non-targeted elemental metabolomics showed that the established mathematical model could reflect the difference in element content between L. macranthoides and L. japonica. Four inorganic elements such as ~(55)Mn, ~(209)Bi, ~(111)Cd, and ~(85)Rb were confirmed as the differential markers of L. macranthoides and L. japonica based on the screening principles of variable importance in the projection(VIP) value>2.0, P<0.01 and fold change(FC) value>1.2 or <0.80. The targeted quantitative results showed that the content of ~(209)Bi in L. japonica was significantly higher than that in L. macranthoides, while ~(55)Mn, ~(111)Cd, and ~(85)Rb in L. macranthoides were significantly higher than that in L. japonica. The non-targeted and targeted elemental metabolomics methods based on ICP-MS can significantly reflect the overall differences in inorganic elements between L. macranthoides and L. japonica. Exploring the differences between them from the perspective of elements can partly reflect the differences in their drug properties and lay a foundation for further study on the quality control mode of inorganic elements in L. macranthoides and L. japonica and their pharmacological effects.


Assuntos
Lonicera , Espectrometria de Massas , Metabolômica , Controle de Qualidade , Lonicera/química , Espectrometria de Massas/métodos , Metabolômica/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise
2.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731557

RESUMO

The supramolecular solvent (SUPRAS) has garnered significant attention as an innovative, efficient, and environmentally friendly solvent for the effective extraction and separation of bioactive compounds from natural resources. However, research on the use of a SUPRAS for the extraction of phenolic compounds from plants, which are highly valued in food products due to their exceptional antioxidant properties, remains scarce. The present study developed a green, ultra-sound-assisted SUPRAS method for the simultaneous determination of three phenolic acids in Prunella vulgaris using high-performance liquid chromatography (HPLC). The experimental parameters were meticulously optimized. The efficiency and antioxidant properties of the phenolic compounds obtained using different extraction methods were also compared. Under optimal conditions, the extraction efficiency of the SUPRAS, prepared with octanoic acid reverse micelles dispersed in ethanol-water, significantly exceeded that of conventional organic solvents. Moreover, the SUPRAS method demonstrated greater antioxidant capacity. Confocal laser scanning microscopy (CLSM) images revealed the spherical droplet structure of the SUPRAS, characterized by a well-defined circular fluorescence position, which coincided with the position of the phenolic acids. The phenolic acids were encapsulated within the SUPRAS droplets, indicating their efficient extraction capacity. Furthermore, molecular dynamics simulations combined with CLSM supported the proposed method's mechanism and theoretically demonstrated the superior extraction performance of the SUPRAS. In contrast to conventional methods, the higher extraction efficiency of the SUPRAS can be attributed to the larger solvent contact surface area, the formation of more types of hydrogen bonds between the extractants and the supramolecular solvents, and stronger, more stable interaction forces. The results of the theoretical studies corroborate the experimental outcomes.


Assuntos
Antioxidantes , Fenóis , Extratos Vegetais , Solventes , Solventes/química , Fenóis/química , Fenóis/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão/métodos , Química Verde , Simulação de Dinâmica Molecular , Hidroxibenzoatos/química , Hidroxibenzoatos/isolamento & purificação
3.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2734-2744, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812174

RESUMO

Prunella vulgaris, aptly named for its withering at the summer solstice, displays significant variation in quality arising from differing harvest time. However, research on the chemical composition changes of its spikes at various stages is limited, and the specific metabolites remain unclear. In order to elucidate the metabolites and metabolic pathways of the spikes of P. vulgaris, the current study deployed ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) and targeted metabolomics to characterize the compound variability in the spikes of P. vulgaris across different periods. Multivariate statistical techniques such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to identify the differences in metabolites, and relevant metabolic pathways were analyzed. A total of 602 metabolites were identified by metabolomics, of which organic acids and their derivatives were the most abundant, followed by flavonoids. Multiple differential metabolites, including p-hydroxybenzoic acids and gallic acids were identified based on variable importance in projection(VIP)>1 and P<0.05. The results of enrichment analysis suggested that isoflavonoids biosynthesis, aminobenzoate degradation, benzoate degradation, anthocyanins biosynthesis, metabolic pathways, microbial metabolism in different environments, secondary plant metabolite biosynthesis, tryptophan metabolism, and phenylpropanoid synthesis were the main metabolic pathways. These results intend to elucidate the dynamic changes of differential metabolites of P. vulgaris and provide a theoretical basis for further study of the harvesting mechanism of spikes of P. vulgaris.


Assuntos
Metabolômica , Prunella , Espectrometria de Massas em Tandem , Prunella/química , Prunella/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Metabolômica/métodos , Espectrometria de Massa com Cromatografia Líquida
4.
ACS Synth Biol ; 13(6): 1906-1915, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38733599

RESUMO

Synthetic biology constitutes a scientific domain focused on intentional redesign of organisms to confer novel functionalities or create new products through strategic engineering of their genetic makeup. Leveraging the inherent capabilities of nature, one may address challenges across diverse sectors including medicine. Inspired by this concept, we have developed an innovative bioengineering platform, enabling high-yield and large-scale production of biological small interfering RNA (BioRNA/siRNA) agents via bacterial fermentation. Herein, we show that with the use of a new tRNA fused pre-miRNA carrier, we can produce various forms of BioRNA/siRNA agents within living host cells. We report a high-level overexpression of nine target BioRNA/siRNA molecules at 100% success rate, yielding 3-10 mg of BioRNA/siRNA per 0.25 L of bacterial culture with high purity (>98%) and low endotoxin (<5 EU/µg RNA). Furthermore, we demonstrate that three representative BioRNA/siRNAs against GFP, BCL2, and PD-L1 are biologically active and can specifically and efficiently silence their respective targets with the potential to effectively produce downstream antiproliferation effects by PD-L1-siRNA. With these promising results, we aim to advance the field of synthetic biology by offering a novel platform to bioengineer functional siRNA agents for research and drug development.


Assuntos
RNA Interferente Pequeno , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Humanos , Biologia Sintética/métodos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Mol Pharmacol ; 106(1): 13-20, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38719476

RESUMO

The clinical use of RNA interference (RNAi) molecular mechanisms has introduced a novel, growing class of RNA therapeutics capable of treating diseases by controlling target gene expression at the posttranscriptional level. With the newly approved nedosiran (Rivfloza), there are now six RNAi-based therapeutics approved by the United States Food and Drug Administration (FDA). Interestingly, five of the six FDA-approved small interfering RNA (siRNA) therapeutics [patisiran (Onpattro), lumasiran (Oxlumo), inclisiran (Leqvio), vutrisiran (Amvuttra), and nedosiran] were revealed to act on the 3'-untranslated regions of target mRNAs, instead of coding sequences, thereby following the common mechanistic action of genome-derived microRNAs (miRNA). Furthermore, three of the FDA-approved siRNA therapeutics [patisiran, givosiran (Givlaari), and nedosiran] induce target mRNA degradation or cleavage via near-complete rather than complete base-pair complementarity. These features along with previous findings confound the currently held characteristics to distinguish siRNAs and miRNAs or biosimilars, of which all converge in the RNAi regulatory pathway action. Herein, we discuss the RNAi mechanism of action and current criteria for distinguishing between miRNAs and siRNAs while summarizing the common and unique chemistry and molecular pharmacology of the six FDA-approved siRNA therapeutics. The term "RNAi" therapeutics, as used previously, provides a coherently unified nomenclature for broader RNAi forms as well as the growing number of therapeutic siRNAs and miRNAs or biosimilars that best aligns with current pharmacological nomenclature by mechanism of action. SIGNIFICANCE STATEMENT: The common and unique chemistry and molecular pharmacology of six FDA-approved siRNA therapeutics are summarized, in which nedosiran is newly approved. We point out rather a surprisingly mechanistic action as miRNAs for five siRNA therapeutics and discuss the differences and similarities between siRNAs and miRNAs that supports using a general and unified term "RNAi" therapeutics to align with current drug nomenclature criteria in pharmacology based on mechanism of action and embraces broader forms and growing number of novel RNAi therapeutics.


Assuntos
RNA Interferente Pequeno , Humanos , RNA Interferente Pequeno/genética , Terapêutica com RNAi/métodos , Interferência de RNA , Animais , MicroRNAs/genética
6.
Heliyon ; 10(7): e28458, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601543

RESUMO

In managing unique complexities associated with Chinese medicinal quality assessment, metabolomics serves as an innovative tool. This study proposes an analytical approach to assess differing qualities of Scrophularia ningpoensis (S. ningpoensis)Hemsl by identifying potential biomarker metabolites and their activity with the corresponding secondary metabolites. The methodology includes four steps; first, a GC-MS based metabolomics exploration of the Scrophularia ningpoensis Hemsl. Second, a multivariate statistical analysis (PCA, PLS-DA, OPLS-DA) for quality assessment and biomarker identification. Third, the application of ROC analysis and pathway analysis based on identified biomarkers. Finally, validation of the associated active ingredients by HPLC. The analysis showed distinct metabolite profiles across varying grades of S. ningpoensis Hemsl, establishing a grading dependency relationship. Select biomarkers (gluconic Acid, d-xylulose, sucrose, etc.) demonstrated robust grading performances. Further, the Pentose Phosphate Pathway, deemed as most influential in grading, was tied to the synthesis of key constituents (iridoids, phenylpropanoids). HPLC validation tests affirm a decreasing trend in harpagoside and cinnamic acid levels between first and third-grade samples. In conclusion, this GC-MS based metabolomics combined HPLC method offers a sound approach to assess and distinguish quality variations in S. ningpoensis Hemsl samples.

7.
Int J Biol Macromol ; 267(Pt 1): 131499, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614164

RESUMO

The genus Lilium (Lilium) has been widely used in East Asia for over 2000 years due to its rich nutritional and medicinal value, serving as both food and medicinal ingredient. Polysaccharides, as one of the most important bioactive components in Lilium, offer various health benefits. Recently, polysaccharides from Lilium plants have garnered significant attention from researchers due to their diverse biological properties including immunomodulatory, anti-oxidant, anti-diabetic, anti-tumor, anti-bacterial, anti-aging and anti-radiation effects. However, the limited comprehensive understanding of polysaccharides from Lilium plants has hindered their development and utilization. This review focuses on the extraction, purification, structural characteristics, biological activities, structure-activity relationships, applications, and relevant bibliometrics of polysaccharides from Lilium plants. Additionally, it delves into the potential development and future research directions. The aim of this article is to provide a comprehensive understanding of polysaccharides from Lilium plants and to serve as a basis for further research and development as therapeutic agents and multifunctional biomaterials.


Assuntos
Lilium , Polissacarídeos , Lilium/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Relação Estrutura-Atividade , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação
8.
Dalton Trans ; 53(14): 6275-6281, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506644

RESUMO

The detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) is not only of great significance in the areas of biomedicine and neurochemistry but also helpful in disease diagnosis and pathology research. Due to their diverse structures, designability, and large specific surface areas, metal-organic frameworks (MOFs) have recently caught considerable attention in the electrochemical field. Herein, a family of heterometallic MOFs with amino modification, MIL-125(Ti-Al)-xNH2 (x = 0%, 25%, 50%, 75%, and 100%), were synthesized and employed as electrochemical sensors for the detection of AA, DA, and UA. Among them, MIL-125(Ti-Al)-75%NH2 exhibited the most promising electrochemical behavior with 40% doping of carbon black in 0.1 M PBS (pH = 7.10), which displayed individual detection performance with wide linear detection ranges (1.0-6.5 mM for AA, 5-100 µM for DA and 5-120 µM for UA) and low limits of detection (0.215 mM for AA, 0.086 µM for DA, and 0.876 µM for UA, S/N = 3). Furthermore, the as-prepared MIL-125(Ti-Al)-75%NH2/GCE provided a promising platform for future application in real sample analysis, owing to its excellent anti-interference performance and good stability.


Assuntos
Dopamina , Estruturas Metalorgânicas , Dopamina/análise , Ácido Úrico/análise , Ácido Ascórbico/química , Eletrodos , Titânio , Técnicas Eletroquímicas
9.
RNA ; 30(6): 680-694, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38429100

RESUMO

Genome-derived microRNAs (miRNAs or miRs) govern posttranscriptional gene regulation and play important roles in various cellular processes and disease progression. While chemo-engineered miRNA mimics or biosimilars made in vitro are widely available and used, miRNA agents produced in vivo are emerging to closely recapitulate natural miRNA species for research. Our recent work has demonstrated the success of high-yield, in vivo production of recombinant miRNAs by using human tRNA (htRNA) fused precursor miRNA (pre-miR) carriers. In this study, we aim to compare the production of bioengineered RNA (BioRNA) molecules with glycyl versus leucyl htRNA fused hsa-pre-miR-34a carriers, namely, BioRNAGly and BioRNALeu, respectively, and perform the initial functional assessment. We designed, cloned, overexpressed, and purified a total of 48 new BioRNA/miRNAs, and overall expression levels, final yields, and purities were revealed to be comparable between BioRNAGly and BioRNALeu molecules. Meanwhile, the two versions of BioRNA/miRNAs showed similar activities to inhibit non-small cell lung cancer cell viability. Interestingly, functional analyses using model BioRNA/miR-7-5p demonstrated that BioRNAGly/miR-7-5p exhibited greater efficiency to regulate a known target gene expression (EGFR) than BioRNALeu/miR-7-5p, consistent with miR-7-5p levels released in cells. Moreover, BioRNAGly/miR-7-5p showed comparable or slightly greater activities to modulate MRP1 and VDAC1 expression, compared with miRCURY LNA miR-7-5p mimic. Computational modeling illustrated overall comparable 3D structures for exemplary BioRNA/miRNAs with noticeable differences in htRNA species and payload miRNAs. These findings support the utility of hybrid htRNA/hsa-pre-miR-34a as reliable carriers for RNA molecular bioengineering, and the resultant BioRNAs serve as functional biologic RNAs for research and development.


Assuntos
Antineoplásicos , Bioengenharia , MicroRNAs , RNA de Transferência de Glicina , RNA de Transferência de Leucina , RNA de Transferência de Glicina/química , RNA de Transferência de Glicina/genética , RNA de Transferência de Glicina/isolamento & purificação , RNA de Transferência de Glicina/farmacologia , RNA de Transferência de Leucina/química , RNA de Transferência de Leucina/genética , RNA de Transferência de Leucina/isolamento & purificação , RNA de Transferência de Leucina/farmacologia , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/isolamento & purificação , MicroRNAs/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Antineoplásicos/farmacologia , Expressão Gênica/efeitos dos fármacos , Simulação por Computador , Linhagem Celular Tumoral
10.
Chin J Integr Med ; 30(5): 387-397, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38302647

RESUMO

OBJECTIVE: To develop an interference-free and rapid method to elucidate Guanxin II (GX II)'s representative vasodilator absorbed bioactive compounds (ABCs) among enormous phytochemicals. METHODS: The contents of ferulic acid, tanshinol, and hydroxysafflor yellow A (FTA) in GX II/rat serum after the oral administration of GX II (30 g/kg) were detected using ultra-performance liquid chromatography-mass spectrometry. Totally 18 rats were randomly assigned to the control group (0.9% normal saline), GX II (30 g/kg) and FTA (5, 28 and 77 mg/kg) by random number table method. Diastolic coronary flow velocity-time integral (VTI), i.e., coronary flow or coronary flow-mediated dilation (CFMD), and endothelium-intact vascular tension of isolated aortic rings were measured. After 12 h of exposure to blank medium or 0.5 mmol/L H2O2, endothelial cells (ECs) were treated with post-dose GX II of supernatant from deproteinized serum (PGSDS, 300 µL PGSDS per 1 mL of culture medium) or FTA (237, 1539, and 1510 mg/mL) for 10 min as control, H2O2, PGSDS and FTA groups. Nitric oxide (NO), vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), superoxide dismutase (SOD), malondialdehyde (MDA) and phosphorylated phosphoinositide 3 kinase (p-PI3K), phosphorylated protein kinase B (p-AKT), phosphorylated endothelial nitric oxide synthase (p-eNOS) were analyzed. PGSDS was developed as a GX II proxy of ex vivo herbal crude extracts. RESULTS: PGSDS effectively eliminates false responses caused by crude GX II preparations. When doses equaled the contents in GX II/its post-dose serum, FTA accounted for 98.17% of GX II -added CFMD and 92.99% of PGSDS-reduced vascular tension. In ECs, FTA/PGSDS was found to have significant antioxidant (lower MDA and higher SOD, P<0.01) and endothelial function-protective (lower VEGF, ET-1, P<0.01) effects. The increases in aortic relaxation, endothelial NO levels and phosphorylated PI3K/Akt/eNOS protein induced by FTA/PGSDS were markedly abolished by NG-nitro-L-arginine methyl ester (L-NA, eNOS inhibitor) and wortmannin (PI3K/AKT inhibitor), respectively, indicating an endothelium-dependent vasodilation via the PI3K/AKT-eNOS pathway (P<0.01). CONCLUSION: This study provides a strategy for rapidly and precisely elucidating GX II's representative in/ex vivo cardioprotective absorbed bioactive compounds (ABCs)-FTA, suggesting its potential in advancing precision ethnomedicine.


Assuntos
Endotélio Vascular , Vasodilatação , Animais , Vasodilatação/efeitos dos fármacos , Masculino , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Ratos Sprague-Dawley , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Óxido Nítrico/metabolismo , Vasodilatadores/farmacologia , Vasodilatadores/farmacocinética , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/farmacocinética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo
11.
J Sci Food Agric ; 104(10): 5764-5775, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38385827

RESUMO

BACKGROUND: Hot compressed water (HCW), also known as subcritical water (SCW), refers to high-temperature compressed water in a special physical and chemical state. It is an emerging technology for natural product extraction. The volatile organic compounds (VOCs) generated from the Maillard reaction between l-ascorbic acid (ASA) and l-cysteine (Cys) have attracted significant interest in the flavor and fragrance industry. This study aimed to explore the formation mechanism of VOCs from ASA and Cys and examine the effects of reaction parameters such as temperature, time, and pH in HCW. RESULTS: The identified VOCs were predominantly thiophene derivatives, polysulfides, and pyrazine derivatives in HCW. The findings indicated that thiophene derivatives were formed under various pH conditions, with polysulfide formation favored under acidic conditions and pyrazine derivative formation preferred under weak alkaline conditions, specifically at pH 8.0. CONCLUSION: The Maillard reaction between ASA and Cys mainly produced thiophene derivatives, polysulfides, and pyrazine derivatives in HCW. The generation mechanism was significantly dependent on the surrounding pH conditions. © 2024 Society of Chemical Industry.


Assuntos
Ácido Ascórbico , Cisteína , Temperatura Alta , Reação de Maillard , Compostos Orgânicos Voláteis , Água , Cisteína/química , Cisteína/análogos & derivados , Compostos Orgânicos Voláteis/química , Ácido Ascórbico/química , Água/química , Concentração de Íons de Hidrogênio
12.
Int J Sports Phys Ther ; 19(2): 166-175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313668

RESUMO

Background: Concussions are often accompanied by balance disturbances. Clinically accurate evaluation systems are often expensive, large, and inaccessible to most clinicians. The Sway Balance Mobile Application (SWAY) is an accessible method to quantify balance changes. Purpose: To determine the known groups and convergent validity of the SWAY to assess balance after a concussion. Study Design: Case-Control Study. Methods: Twenty participants with acute concussion and twenty controls were recruited. At initial, one-week, and final return to activity (RTA) evaluations, all participants completed the Sports Concussion Assessment Tool (SCAT-5), and balance control measured by SWAY mBESS and NeuroCom Balance Master Sensory Organization Test (SOT). Mixed model ANOVAs were used to detect differences in SWAY mBESS and NeuroCom SOT scores with time (initial, one-week, final RTA) as the within-subjects factor and group (concussed, healthy) as the between-subjects factor. Spearman's Rho correlations explored the associations between NeuroCom SOT scores, SWAY scores, SCAT-5 symptom scores, and time in days to final RTA. Results: The sampled population was predominantly male and age (20 ± 1), and BMI differences were insignificant between groups. The SWAY did not detect differences between healthy and concussed participants and did not detect change over time [F(2,40) = .114, p = 0.89; F(2,40)= .276, p =0.60]. When assessing the relationship between the SWAY and the SOT, no correlation was found at any time point (r = -0.317 to -0.062, p > 0.05). Time to RTA demonstrated a moderate correlation with both SCAT-5 symptom severity score (r = .693, p < 0.01) and SCAT-5 total symptom score (r = .611, p < 0.01) at the one-week follow-up. Conclusion: The SWAY mBESS does not appear to be a valid balance assessment for the concussed patient. The SWAY mBESS in patients with concussion failed to demonstrate convergent validity and did not demonstrate an ability to validate known groups. When assessing the time to final RTA, the one-week post-initial assessment SCAT-5 symptom severity and total scores may help determine the length of recovery in this population. Level of Evidence: Level 3.

13.
Nat Commun ; 15(1): 255, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177179

RESUMO

The multifaceted chemo-immune resistance is the principal barrier to achieving cure in cancer patients. Identifying a target that is critically involved in chemo-immune-resistance represents an attractive strategy to improve cancer treatment. iRhom1 plays a role in cancer cell proliferation and its expression is negatively correlated with immune cell infiltration. Here we show that iRhom1 decreases chemotherapy sensitivity by regulating the MAPK14-HSP27 axis. In addition, iRhom1 inhibits the cytotoxic T-cell response by reducing the stability of ERAP1 protein and the ERAP1-mediated antigen processing and presentation. To facilitate the therapeutic translation of these findings, we develop a biodegradable nanocarrier that is effective in codelivery of iRhom pre-siRNA (pre-siiRhom) and chemotherapeutic drugs. This nanocarrier is effective in tumor targeting and penetration through both enhanced permeability and retention effect and CD44-mediated transcytosis in tumor endothelial cells as well as tumor cells. Inhibition of iRhom1 further facilitates tumor targeting and uptake through inhibition of CD44 cleavage. Co-delivery of pre-siiRhom and a chemotherapy agent leads to enhanced antitumor efficacy and activated tumor immune microenvironment in multiple cancer models in female mice. Targeting iRhom1 together with chemotherapy could represent a strategy to overcome chemo-immune resistance in cancer treatment.


Assuntos
Células Endoteliais , Neoplasias , Humanos , Feminino , Animais , Camundongos , Linhagem Celular Tumoral , Portadores de Fármacos , Proliferação de Células , Neoplasias/tratamento farmacológico , Receptores de Hialuronatos , Aminopeptidases , Antígenos de Histocompatibilidade Menor , Proteínas de Membrana
14.
Adv Sci (Weinh) ; 11(6): e2306336, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072677

RESUMO

A critical challenge of existing cancer vaccines is to orchestrate the demands of antigen-enriched furnishment and optimal antigen-presentation functionality within antigen-presenting cells (APCs). Here, a complementary immunotherapeutic strategy is developed using dendritic cell (DC)-tumor hybrid cell-derived chimeric exosomes loaded with stimulator of interferon genes (STING) agonists (DT-Exo-STING) for maximized tumor-specific T-cell immunity. These chimeric carriers are furnished with broad-spectrum antigen complexes to elicit a robust T-cell-mediated inflammatory program through direct self-presentation and indirect DC-to-T immunostimulatory pathway. This chimeric exosome-assisted delivery strategy possesses the merits versus off-the-shelf cyclic dinucleotide (CDN) delivery techniques in both the brilliant tissue-homing capacity, even across the intractable blood-brain barrier (BBB), and the desired cytosolic entry for enhanced STING-activating signaling. The improved antigen-presentation performance with this nanovaccine-driven STING activation further enhances tumor-specific T-cell immunoresponse. Thus, DT-Exo-STING reverses immunosuppressive glioblastoma microenvironments to pro-inflammatory, tumoricidal states, leading to an almost obliteration of intracranial primary lesions. Significantly, an upscaling option that harnesses autologous tumor tissues for personalized DT-Exo-STING vaccines increases sensitivity to immune checkpoint blockade (ICB) therapy and exerts systemic immune memory against post-operative glioma recrudesce. These findings represent an emerging method for glioblastoma immunotherapy, warranting further exploratory development in the clinical realm.


Assuntos
Exossomos , Glioblastoma , Humanos , Glioblastoma/terapia , Linfócitos T , Apresentação de Antígeno , Imunoterapia/métodos , Microambiente Tumoral
15.
PeerJ ; 11: e16308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025760

RESUMO

Aim: N6-methyladenosine (m6A) RNA methylation exerts a regulatory effect on endometrioid ovarian cancer (EOC), but the specific m6A regulator genes in EOC remain to be explored. This study investigated that sulforaphene (Sul) is implicated in EOC development by regulating methyltransferase-like 3 (METTL3). Methods: The dysregulated m6A RNA methylation genes in EOC were determined by methylated RNA immunoprecipitation (MeRIP-seq) and RNA sequencing. The roles of METTL3 and/or Sul on viability, proliferative ability, cell cycle, and apoptosis of EOC cells were determined by MTT, colony formation, flow cytometry, and TUNEL staining assay, respectively. The expression of METTL3 and apoptosis-related proteins in EOC cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays. Results: Five m6A RNA methylation regulators (METTL3, ELF3, IGF2BP2, FTO, and METTL14) were differentially expressed in EOC, among which METTL3 had the highest expression level. Silencing METTL3 reduced the clonal expansion and viability of EOC cells, and caused the cells to arrest in the G0/G1 phase. This also promoted apoptosis in the EOC cells and activated the FAS/FADD and mitochondrial apoptosis pathways. In contrast, overexpressing METTL3 had the opposite effect. Sul, in a dose-dependent manner, reduced the viability of EOC cells but promoted their apoptosis. Sul also increased the levels of IGF2BP2 and FAS, while decreasing the levels of KRT8 and METTL3. Furthermore, Sul was able to reverse the effects of METTL3 overexpression on EOC cells. Conclusions: Sul could suppress cell proliferation and promote apoptosis of EOC cells by inhibiting the METTL3 to activate the FAS/FADD and apoptosis-associated pathways.


Assuntos
Carcinoma Endometrioide , Neoplasias Ovarianas , Feminino , Humanos , Proliferação de Células/genética , Apoptose/genética , Carcinoma Endometrioide/genética , Carcinoma Epitelial do Ovário , Neoplasias Ovarianas/genética , RNA , Metiltransferases/genética , Proteínas de Ligação a RNA , Dioxigenase FTO Dependente de alfa-Cetoglutarato
16.
World J Gastroenterol ; 29(36): 5240-5253, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37901447

RESUMO

BACKGROUND: The diagnostic value of combined methylated branched chain amino acid transaminase 1 (BCAT1)/IKAROS family zinc finger 1 (IKZF1) in plasma for colorectal cancer (CRC) has been explored since 2015. Recently, several related studies have published their results and showed its diagnostic efficacy. AIM: To analyze the diagnostic value of methylated BCAT1/IKZF1 in plasma for screening and postoperative follow-up of CRC. METHODS: The candidate studies were identified by searching the PubMed, Embase, Cochrane Library, CNKI, and Wanfang databases from May 31, 2003 to June 1, 2023. Sensitivity, specificity, and diagnostic accuracy were calculated by merging ratios or means. RESULTS: Twelve eligible studies were included in the analysis, involving 6561 participants. The sensitivity of methylated BCAT1/IKZF1 in plasma for CRC diagnosis was 60% [95% confidence interval (CI) 53-67] and specificity was 92% (95%CI: 90-94). The positive and negative likelihood ratios were 8.0 (95%CI: 5.8-11.0) and 0.43 (95%CI: 0.36-0.52), respectively. Diagnostic odds ratio was 19 (95%CI: 11-30) and area under the curve was 0.88 (95%CI: 0.85-0.91). The sensitivity and specificity for CRC screening were 64% (95%CI: 59-69) and 92% (95%CI: 91-93), respectively. The sensitivity and specificity for recurrence detection during follow-up were 54% (95%CI: 42-67) and 93% (95%CI: 88-96), respectively. CONCLUSION: The detection of methylated BCAT1/IKZF1 in plasma, as a non-invasive detection method of circulating tumor DNA, has potential CRC diagnosis, but the clinical application prospect needs to be further explored.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Humanos , Biomarcadores Tumorais/genética , Metilação de DNA , Neoplasias Colorretais/patologia , Transaminases , Aminoácidos de Cadeia Ramificada/genética
17.
Acta Pharm Sin B ; 13(10): 4273-4290, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799388

RESUMO

During the development of therapeutic microRNAs (miRNAs or miRs), it is essential to define their pharmacological actions. Rather, miRNA research and therapy mainly use miRNA mimics synthesized in vitro. After experimental screening of unique recombinant miRNAs produced in vivo, three lead antiproliferative miRNAs against human NSCLC cells, miR-22-3p, miR-9-5p, and miR-218-5p, were revealed to target folate metabolism by bioinformatic analyses. Recombinant miR-22-3p, miR-9-5p, and miR-218-5p were shown to regulate key folate metabolic enzymes to inhibit folate metabolism and subsequently alter amino acid metabolome in NSCLC A549 and H1975 cells. Isotope tracing studies further confirmed the disruption of one-carbon transfer from serine to folate metabolites by all three miRNAs, inhibition of glucose uptake by miR-22-3p, and reduction of serine biosynthesis from glucose by miR-9-5p and -218-5p in NSCLC cells. With greater activities to interrupt NSCLC cell respiration, glycolysis, and colony formation than miR-9-5p and -218-5p, recombinant miR-22-3p was effective to reduce tumor growth in two NSCLC patient-derived xenograft mouse models without causing any toxicity. These results establish a common antifolate mechanism and differential actions on glucose uptake and metabolism for three lead anticancer miRNAs as well as antitumor efficacy for miR-22-3p nanomedicine, which shall provide insight into developing antimetabolite RNA therapies.

19.
Biomaterials ; 301: 122231, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37418854

RESUMO

The challenge of wound infections post-surgery and open trauma caused by multidrug-resistant bacteria poses a constant threat to clinical treatment. As a promising antimicrobial treatment, photothermal therapy can effectively resolve the problem of drug resistance in conventional antibiotic antimicrobial therapy. Here, we report a deep-penetration functionalized cuttlefish ink nanoparticle (CINP) for photothermal and immunological therapy of wound infections. CINP is decorated with zwitterionic polymer (ZP, namely sulfobetaine methacrylate-methacrylate copolymer) to form CINP@ZP nanoparticles. Natural CINP is found to not only exhibit photothermal destruction of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), but also trigger macrophages-related innate immunity and enhance their antibacterial functions. The ZP coating on the surface of CINP enables nanoparticles to penetrate into deeply infected wound environment. In addition, CINP@ZP is further integrated into the thermosensitive Pluronic F127 gel (CINP@ZP-F127). After in situ spraying gel, CINP@ZP-F127 is also documented notable antibacterial effects in mice wound models infected with MRSA and E. coli. Collectively, this approach combining of photothermal therapy with immunotherapy can promote delivery efficiency of nanoparticles to the deep foci of infective wounds, and effectively eliminate wound infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Infecção dos Ferimentos , Camundongos , Animais , Terapia Fototérmica , Escherichia coli , Tinta , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Polímeros/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Decapodiformes
20.
Ann Hepatol ; 28(5): 101118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37268061

RESUMO

INTRODUCTION AND OBJECTIVES: Breast and non-small cell lung cancers harbor an upregulated CSNK2A2 oncogene that encodes the protein kinase CK2 alpha', a catalytic subunit of the highly conserved serine/threonine kinase CK2. However, its role and biological significance in hepatocellular carcinoma (HCC) remains unclear. MATERIALS AND METHODS: Western-blotting and immunohistochemistry were used to measure the expression of CSNK2A2 in HCC tumor tissues and cell lines. CCK8, Hoechst staining, transwell, tube formation assay in vitro and nude mice experiments in vivo were used to measure the effects of CSNK2A2 on HCC proliferation, apoptosis, metastasis, angiogenesis and tumor formation. RESULTS: In the study, we showed that CSNK2A2 was highly expressed in HCC comparison with matched control tissues, and was linked with lower survival of patients. Additional experiments indicated that silencing of CSNK2A2 promoted HCC cell apoptosis, while inhibited HCC cells migrating, proliferating, angiogenesis both in vitro and in vivo. These effects were also accompanied by reduced expression of NF-κB target genes, including CCND1, MMP9 and VEGF. Moreover, treatment with PDTC counteracted the promotional effects of CSNK2A2 on HCC cells. CONCLUSIONS: Overall, our results suggested that CSNK2A2 could promote HCC progression by activating the NF-κB pathway, and this could serve as a biomarker for future prognostic and therapeutic applications.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Camundongos Nus , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...