Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cells ; 12(16)2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37626895

RESUMO

This study comprehensively addresses the involvement of the protein CKLF-like Marvel transmembrane domain-containing family member 5 (CMTM5) in the context of demyelination and cytodegenerative autoimmune diseases, particularly multiple Sclerosis (MS). An observed reduction in CMTM5 expression in post-mortem MS lesions prompted further investigations in both in vitro and in vivo animal models. In the cuprizone animal model, we detected a decrease in CMTM5 expression in oligodendrocytes that is absent in other members of the CMTM protein family. Our findings also confirm these results in the experimental autoimmune encephalomyelitis (EAE) model with decreased CMTM5 expression in both cerebellum and spinal cord white matter. We also examined the effects of a Cmtm5 knockdown in vitro in the oligodendroglial Oli-neu mouse cell line using the CRISPR interference technique. Interestingly, we found no effects on cell response to thapsigargin-induced endoplasmic reticulum (ER) stress as determined by Atf4 activity, an indicator of cellular stress responses. Overall, these results substantiate previous findings suggesting that CMTM5, rather than contributing to myelin biogenesis, is involved in maintaining axonal integrity. Our study further demonstrates that the knockdown of Cmtm5 in vitro does not modulate oligodendroglial responses to ER stress. These results warrant further investigation into the functional role of CMTM5 during axonal degeneration in the context of demyelinating conditions.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Esclerose Múltipla/genética , Proteínas da Mielina/genética , Encefalomielite Autoimune Experimental/genética , Autopsia , Oligodendroglia
2.
Cells ; 11(16)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36010640

RESUMO

Astrocytes have distinctive morphological and functional characteristics, and are found throughout the central nervous system. Astrocytes are now known to be far more than just housekeeping cells in the brain. Their functions include contributing to the formation of the blood-brain barrier, physically and metabolically supporting and communicating with neurons, regulating the formation and functions of synapses, and maintaining water homeostasis and the microenvironment in the brain. Aquaporins (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes. Various subtypes of AQPs (AQP1, AQP3, AQP4, AQP5, AQP8 and AQP9) have been reported to be expressed in astrocytes, and the expressions and subcellular localizations of AQPs in astrocytes are highly correlated with both their physiological and pathophysiological functions. This review describes and summarizes the recent advances in our understanding of astrocytes and AQPs in regard to controlling water homeostasis in the brain. Findings regarding the features of different AQP subtypes, such as their expression, subcellular localization, physiological functions, and the pathophysiological roles of astrocytes are presented, with brain edema and glioma serving as two representative AQP-associated pathological conditions. The aim is to provide a better insight into the elaborate "water distribution" system in cells, exemplified by astrocytes, under normal and pathological conditions.


Assuntos
Aquaporinas , Astrócitos , Aquaporinas/metabolismo , Astrócitos/metabolismo , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Água/metabolismo
3.
Adv Neurobiol ; 21: 247-266, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30334225

RESUMO

Epilepsy is one of the most common complex neurological diseases. It is frequently associated with intellectual and developmental disabilities (ID/DD). In recent years, copy number variation (CNV), especially microdeletion, was proven to be a potential key factor of genetic epilepsy. In this paper, the authors tested the hypothesis that the large de novo rare CNV is an important cause of epilepsy with ID/DD. We performed a custom array comparative genomic hybridization (aCGH) to detect the CNVs of 96 Chinese epileptic patients with ID/DD. The aCGH was designed with a higher density probe coverage of 320 genes known to be involved in epilepsy and ID/DD with lower density whole-genome backbone coverage. We detected 9 large de novo rare microdeletions from 8 patients. These CNVs are located on 2q24.1, 2q33.1-q34, 5q13.2 (2 similar CNVs), 5q33.1-q34, 17p13.2, 22q11.21-q11.22 (2 identical CNVs) and Xp22.31. We also found that only a few genes in the CNVs are known epilepsy related genes. By analysis with systems biology, we found most of the genes are interacting genes known to be epilepsy related genes. We also found a gene motif "BGNADP", constructed by BTD, GALNT10, NMUR2, AUTS2, DLG2 and PTPRD, would be a key motif in epilepsy and ID/DD. These findings strongly indicate that some large de novo rare microdeletion is an important pathological cause of epilepsy with ID/DD. Our study also found a gene motif "BGNADP" should be a key small network in epilepsy with ID/DD.


Assuntos
Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento , Epilepsia , Criança , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Epilepsia/complicações , Epilepsia/genética , Humanos , Biologia de Sistemas
4.
Sheng Li Xue Bao ; 69(5): 703-714, 2017 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-29063118

RESUMO

DREAM (downstream regulatory element antagonist modulator), Calsenilin and KChIP3 (potassium channel interacting protein 3) belong to the neuronal calcium sensor (NCS) superfamily, which transduces the intracellular calcium signaling into a variety of activities. They are encoded by the same gene locus, but have distinct subcellular locations. DREAM was first found to interact with DRE (downstream regulatory element) site in the vicinity of the promoter of prodynorphin gene to suppress gene transcription. Calcium can disassemble this interaction by binding reversibly to DREAM protein on its four EF-hand motifs. Apart from having calcium dependent DRE site binding, DREAM can also interact with other transcription factors, such as cAMP responsive element binding protein (CREB), CREB-binding protein (CBP) and cAMP responsive element modulator (CREM), by this concerted actions, DREAM extends the gene pool under its control. DREAM is predominantly expressed in central nervous system with its highest level in cerebellum, and accumulating evidence demonstrated that DREAM might play important roles in pain sensitivity. Novel findings have shown that DREAM is also involved in learning and memory processes, Alzheimer's disease and stroke. This mini-review provides a brief introduction of its discovery history and protein structure properties, focusing on the mechanism of DREAM nuclear translocation and gene transcription regulation functions.


Assuntos
Regulação da Expressão Gênica , Proteínas Interatuantes com Canais de Kv/fisiologia , Proteínas Repressoras/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Humanos , Proteínas Interatuantes com Canais de Kv/genética , Limiar da Dor , Proteínas Repressoras/genética
5.
Neurochem Res ; 42(6): 1847-1863, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28478595

RESUMO

Cell migration is identified as a highly orchestrated process. It is a fundamental and essential phenomenon underlying tissue morphogenesis, wound healing, and immune response. Under dysregulation, it contributes to cancer metastasis. Brain is considered to be the most complex organ in human body containing many types of neural cells with astrocytes playing crucial roles in monitoring both physiological and pathological functions. Astrocytoma originates from astrocytes and its most malignant type is glioblastoma multiforme (WHO Grade IV astrocytoma), which is capable to infiltrate widely into the neighboring brain tissues making a complete resection of tumors impossible. Very recently, we have reviewed the mechanisms for astrocytes in migration. Given the fact that astrocytoma shares many histological features with astrocytes, we therefore attempt to review the mechanisms for glioma cells in migration and compare them to normal astrocytes, hoping to obtain a better insight into the dysregulation of migratory mechanisms contributing to their metastasis in the brain.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Movimento Celular/fisiologia , Glioma/patologia , Animais , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/cirurgia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/cirurgia , Glioma/metabolismo , Glioma/cirurgia , Humanos
6.
Neurochem Res ; 42(1): 272-282, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27837318

RESUMO

Cell migration is a fundamental phenomenon that underlies tissue morphogenesis, wound healing, immune response, and cancer metastasis. Great progresses have been made in research methodologies, with cell migration identified as a highly orchestrated process. Brain is considered the most complex organ in the human body, containing many types of neural cells with astrocytes playing crucial roles in monitoring normal functions of the central nervous system. Astrocytes are mostly quiescent under normal physiological conditions in the adult brain but become migratory after injury. Under most known pathological conditions in the brain, spinal cord and retina, astrocytes are activated and become hypertrophic, hyperplastic, and up-regulating GFAP based on the grades of severity. These three observations are the hallmark in glia scar formation-astrogliosis. The reactivation process is initiated with structural changes involving cell process migration and ended with cell migration. Detailed mechanisms in astrocyte migration have not been studied extensively and remain largely unknown. Here, we therefore attempt to review the mechanisms in migration of astrocytes.


Assuntos
Astrócitos/metabolismo , Movimento Celular/fisiologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Adesão Celular/fisiologia , Células Cultivadas , Humanos , Medula Espinal/citologia , Medula Espinal/metabolismo
7.
J Pain ; 17(8): 889-903, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27063783

RESUMO

UNLABELLED: Many derivatives of bisphosphonates, which are inhibitors of bone resorption, have been developed as promising agents for painful pathologies in patients with bone resorption-related diseases. The mechanism for pain relief by bisphosphonates remains uncertain. Studies have reported that bisphosphonates could reduce central neurochemical changes involved in the generation and maintenance of bone cancer pain. In this study, we hypothesized that bisphosphonates would inhibit spinal microglial activation and prevent the development of hyperalgesia caused by peripheral tissue injury. We investigated the effects of alendronate (a nitrogen-containing bisphosphonate) on the development of neuropathic pain and its role in modulating microglial activation in vivo and in vitro. Intrathecal and intraperitoneal administration of alendronate relieved neuropathic pain behaviors induced by chronic constriction sciatic nerve injury. Alendronate also significantly attenuated spinal microglial activation and p38 mitogen-activated protein kinase (MAPK) phosphorylation without affecting astrocytes. In vitro, alendronate downregulated phosphorylated p38 and phosphorylated extracellular signal regulated kinase expression in lipopolysaccharide-stimulated primary microglia within 1 hour, and pretreatment with alendronate for 12 and 24 hours decreased the expression of inflammatory cytokines (tumor necrosis factor α, and interleukins 1ß and 6). These findings indicate that alendronate could effectively relieve chronic constriction sciatic nerve injury-induced neuropathic pain by at least partially inhibiting the activation of spinal microglia and the p38 MAPK signaling pathway. PERSPECTIVE: Alendronate could relieve neuropathic pain behaviors in animals by inhibiting the activation of spinal cord microglia and the p38 MAPK cell signaling pathway. Therapeutic applications of alendronate may be extended beyond bone metabolism-related disease.


Assuntos
Alendronato/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Microglia/efeitos dos fármacos , Ciática/tratamento farmacológico , Ciática/patologia , Medula Espinal/patologia , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Colecistocinina/análogos & derivados , Colecistocinina/metabolismo , Citocinas/genética , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Injeções Espinhais , Masculino , Proteínas dos Microfilamentos/metabolismo , Fragmentos de Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Neurooncol ; 128(2): 217-23, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26983952

RESUMO

Phloretin, a flavonoid present in various plants, has been reported to exert anticarcinogenic effects. However, the mechanism of its chemo-preventive effect on human glioblastoma cells is not fully understood. This study aimed to investigate the molecular mechanism of phloretin and its associated chemo-preventive effect in human glioblastoma cells. The results indicate that phloretin inhibited cell proliferation by inducing cell cycle arrest at the G0-G1 phase and induced apoptosis of human glioblastoma cells. Phloretin-induced cell cycle arrest was associated with increased expression of p27 and decreased expression of cdk2, cdk4, cdk6, cyclinD and cyclinE. Moreover, the PI3K/AKT/mTOR signaling cascades were suppressed by phloretin in a dose-dependent manner. In addition, phloretin triggered the mitochondrial apoptosis pathway and generated reactive oxygen species (ROS). This was accompanied by the up-regulation of Bax, Bak and c-PARP and the down-regulation of Bcl-2. The antioxidant agents N-acetyl-L-cysteine and glutathione weakened the effect of phloretin on glioblastoma cells. In conclusion, these results demonstrate that phloretin exerts potent chemo-preventive activity in human glioblastoma cells through the generation of ROS.


Assuntos
Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Floretina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Caspase 9/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Glioblastoma/metabolismo , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
9.
Mol Neurobiol ; 53(10): 7137-7157, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26680419

RESUMO

The nanoscale three-dimensional structures of neurosynapses are unknown, and the neuroanatomical basis of epilepsy remains to be elucidated. Here, we studied the nanoscale three-dimensional synapses between hippocampal neurons, and membranous conjunctions between neurons were found with atomic force microscopy (AFM) and confirmed by transmission electron microscope (TEM), and their pathophysiological significance was primarily investigated. The neurons and dendrites were marked by MAP-2, axons by neurofilament 200, and synapses by synapsin I immunological staining. In the synapsin I-positive neurite ends of the neurons positively stained with MAP-2 and neurofilament 200, neurosynapses with various nanoscale morphology and structure could be found by AFM. The neurosynapses had typical three-dimensional structures of synaptic triplet including the presynaptic neurite end, synaptic cleft of 30 ∼ 40 in chemical synapses and 2 ∼ 6 nm in electrical ones, the postsynaptic neurite or dendrite spine, the typical neurite end button, the distinct pre- and postsynaptic membranes, and the obvious thickening of the postsynaptic membranes or neurites. Some membranous connections including membrane-like junctions (MLJ) and fiber-tube links (FTL) without triplet structures and cleft were found between neurons. The development frequencies of the two membranous conjunctions increased while those of the synaptic conjunctions decreased between the neurons from Otx1 knock-out mice in comparison with those between the neurons from normal mice. These results suggested that the neuroanatomical basis of Otx1 knock-out epilepsy is the combination of the decreased synaptic conjunctions and the increased membranous conjunctions.


Assuntos
Epilepsia/patologia , Hipocampo/patologia , Nanopartículas/ultraestrutura , Neurônios/ultraestrutura , Membranas Sinápticas/ultraestrutura , Animais , Células Cultivadas , Filamentos Intermediários/metabolismo , Camundongos Knockout , Microscopia de Força Atômica , Neuroglia/metabolismo , Ratos Wistar , Sinapsinas/metabolismo
10.
Neurochem Res ; 40(9): 1929-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26248512

RESUMO

Cadmium (Cd), a highly ubiquitous toxic heavy metal, can contaminate the environment, including agricultural soil, water and air, via industrial runoff and other sources of pollution. Cd accumulated in the body via direct exposure or through the food chain results in neurodegeneration and many other diseases. Previous studies on its toxicity in the central nervous system (CNS) focused mainly on neurons. To obtain a more comprehensive understanding of Cd toxicity for the CNS, we investigated how astrocytes respond to acute and chronic Cd exposure and its toxic molecular mechanisms. When primary cultures of cerebral cortical astrocytes incubated with 1-300 µM CdCl2, morphological changes, LDH release and cell death were observed in a time and dose-dependent manner. Further studies demonstrated that acute and chronic Cd treatment phosphorylated JNK, p38 and Akt to different degrees, while ERK1/2 was only phosphorylated under low doses of Cd (10 µM) exposure. Inhibition of JNK and PI3K/Akt, but not of p38, could partially protect astrocyte from cytotoxicity in chronic and acute Cd exposure. Moreover, Cd also induced a strong calcium signal, while BAPTA, a specific intracellular calcium (Ca(2+)) chelator, prevented Cd-induced intracellular increase of calcium levels in astrocytes; inhibited the Cd-induced activation of ERK1/2, JNK, p38 and Akt; and also significantly reduced astrocyte cell death. All of these results suggested that the Cd-Ca(2+)-MAPK and PI3K/Akt signaling pathways were involved in Cd-induced toxicity in astrocytes. This toxicity involvement indicates that these pathways may be exploited as a target for the prevention of Cd-induced neurodegenerative diseases.


Assuntos
Astrócitos/efeitos dos fármacos , Cádmio/toxicidade , Sinalização do Cálcio , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Astrócitos/enzimologia , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos ICR
11.
PLoS One ; 10(4): e0123713, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25879219

RESUMO

Phosphate is essential for all major life processes, especially energy metabolism and signal transduction. A linear phosphate polymer, polyphosphate (polyP), linked by high-energy phosphoanhydride bonds, can interact with various proteins, playing important roles as an energy source and regulatory factor. However, polyP-binding structures are largely unknown. Here we proposed a putative polyP binding site, a positively-charged semi-tunnel (PCST), identified by surface electrostatics analyses in polyP kinases (PPKs) and many other polyP-related proteins. We found that the PCSTs in varied proteins were folded in different secondary structure compositions. Molecular docking calculations revealed a significant value for binding affinity to polyP in PCST-containing proteins. Utilizing the PCST identified in the ß subunit of PPK3, we predicted the potential polyP-binding domain of PPK3. The discovery of this feature facilitates future searches for polyP-binding proteins and discovery of the mechanisms for polyP-binding activities. This should greatly enhance the understanding of the many physiological functions of protein-bound polyP and the involvement of polyP and polyP-binding proteins in various human diseases.


Assuntos
Polifosfatos/metabolismo , Proteínas/metabolismo , Simulação por Computador , Simulação de Acoplamento Molecular , Ligação Proteica , Propriedades de Superfície
12.
J Neurosci Res ; 93(10): 1507-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25711139

RESUMO

Stroke is a leading cause of death and disability, and new strategies are required to reduce neuronal injury and improve prognosis. Ischemia preconditioning (IPC) is an intrinsic phenomenon that protects cells from subsequent ischemic injury and might provide promising mechanisms for clinical treatment. In this study, primary astrocytes exhibited significantly less cell death than control when exposed to different durations of IPC (15, 30, 60, or 120 min). A 15-min duration was the most effective IPC to protect astrocytes from 8-hr-ischemia injury. The protective mechanisms of IPC involve the upregulation of protective proteins, including 14-3-3γ, and attenuation of malondialdehyde (MDA) content and ATP depletion. 14-3-3γ is an antiapoptotic intracellular protein that was significantly upregulated for up to 84 hr after IPC. In addition, IPC promoted activation of the c-Jun N-terminal kinase (JNK), extracellular signal-related kinase (ERK)-1/2, p38, and protein kinase B (Akt) signaling pathways. When JNK was specifically inhibited with SP600125, the upregulation of 14-3-3γ induced by IPC was almost completely abolished; however, there was no effect on ATP or MDA levels. This suggests that, even though both energy preservation and 14-3-3γ up-regulation were turned on by IPC, they were controlled by different pathways. The ERK1/2, p38, and Akt signaling pathways were not involved in the 14-3-3γ upregulation and energy preservation. These results indicate that IPC could protect astrocytes from ischemia injury by inducing 14-3-3γ and by alleviating energy depletion through different pathways, suggesting multiple protection of IPC and providing new insights into potential stroke therapies.


Assuntos
Proteínas 14-3-3/metabolismo , Astrócitos/metabolismo , Regulação da Expressão Gênica/fisiologia , Precondicionamento Isquêmico , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Contagem de Células , Morte Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Isquemia/prevenção & controle , L-Lactato Desidrogenase/metabolismo , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
13.
J Neurosci Res ; 93(2): 253-67, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25250856

RESUMO

The superfamily of importin-ß-related proteins is the largest class of nuclear transport receptors and can be generally divided into importins and exportins according to their transport directions. Eleven importins and seven exportins have been identified, and the expression patterns of both classes are important for their functions in nucleocytoplasmic transport activities. This study demonstrates that all of the importins (importin-ß; transportin-1, -2, and -3; and importin-4, -5, -7, -8, -9, -11, and -13) and all the exportins (exportin-1, -2, -4, -5, -6, -7, and -t) are differentially expressed in the cerebral cortex, cerebellum, hippocampus, and brainstem and in primary cultures of cerebral cortical astrocytes and neurons. For astrocytes, we observed that different importins and exportins displayed different expression changes during 0-6 hr of ischemia treatment, especially an increase of both the mRNA and the protein of exportin-7. Immunostaining showed that exportin-7 accumulated inside the nucleus and around the nuclear envelope. In addition, we noticed an increased cytoplasmic distribution of one of the cargo proteins of exportin-7, LKB1, an important element in maintaining energy homeostasis. This increased cytoplasmic distribution was accompanied by an increased expression of exportin-7 under ischemia in astrocytes. We demonstrate that exportin-7 responds to ischemia in astrocytes and that this response involves translocation of LKB1, a protein that plays important roles during metabolic stress, from the nucleus to the cytoplasm.


Assuntos
Astrócitos/metabolismo , Astrócitos/ultraestrutura , Isquemia Encefálica/patologia , Regulação da Expressão Gênica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Hipóxia Celular/fisiologia , Núcleo Celular/metabolismo , Células Cultivadas , Embrião de Mamíferos , Regulação da Expressão Gênica/genética , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neurônios/citologia , Neurônios/metabolismo , Fotodegradação , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/genética
14.
PLoS One ; 9(12): e114186, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25470382

RESUMO

Retinal ischemia-reperfusion (I/R) injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF), which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2)-mediated induction of heme oxygenase-1 (HO-1). This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p.) injected with SF (12.5 mg/kg) or vehicle (corn oil) once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP) to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II) (ZnPP, 30 mg/kg, i.p.) treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs) and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL), and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway.


Assuntos
Heme Oxigenase-1/metabolismo , Isotiocianatos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/patologia , Retina/efeitos dos fármacos , Células Amácrinas/citologia , Células Amácrinas/efeitos dos fármacos , Células Amácrinas/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/prevenção & controle , Injeções Intraperitoneais , Pressão Intraocular/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Retina/fisiologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Sulfóxidos , Regulação para Cima/efeitos dos fármacos
15.
Cell Mol Neurobiol ; 34(6): 881-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24913968

RESUMO

Stem cell transplantation therapy has provided promising hope for the treatment of a variety of neurodegenerative disorders. Among challenges in developing disease-specific stem cell therapies, identification of key regulatory signals for neuronal differentiation is an essential and critical issue that remains to be resolved. Several lines of evidence suggest that JNK, also known as SAPK, is involved in neuronal differentiation and neural plasticity. It may also play a role in neurite outgrowth during neuronal development. In cultured mouse embryonic stem (ES) cells, we test the hypothesis that the JNK pathway is required for neuronal differentiation. After neural induction, the cells were plated and underwent differentiation for up to 5 days. Western blot analysis showed a dramatic increase in phosphorylated JNKs at 1-5 days after plating. The phosphorylation of JNK subsequently induced activation of STAT1 and STAT3 that lead to expressions of GAP-43, neurofilament, ßIII-tubulin, and synaptophysin. NeuN-colabelled with DCX, a marker for neuroblast, was enhanced by JNK signaling. Neuronal differentiation of ES cells was attenuated by treatment with SP600125, which inhibited the JNK activation and decreased the activation of STAT1 and STAT3, and consequently suppressed the expressions of GAP-43, neurofilament, ßIII-tubulin, and the secretion of VEGF. Data from immunocytochemistry indicated that the nuclear translocation of STAT3 was reduced, and neurites of ES-derived neurons were shorter after treatment with SP600125 compared with control cells. These results suggest that the JNK-STAT3 pathway is a key regulator required for early neuronal differentiation of mouse ES cells. Further investigation on expression of JNK isoforms showed that JNK-3 was significantly upregulated during the differentiation stage, while JNK-1 and JNK-2 levels decreased. Our study provided interesting information on JNK functions during ES cell neuronal differentiation.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neurônios/citologia , Fator de Transcrição STAT3/metabolismo , Animais , Antracenos/farmacologia , Células Cultivadas , Proteína Duplacortina , Camundongos , Fosforilação
16.
Mol Neurobiol ; 49(1): 149-62, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23904011

RESUMO

Neuroglobin, the third mammalian globin with a hexa-coordinated heme, exists predominantly in neurons of the brain. Neuroglobin plays an important role in neuronal death upon ischemia and oxidative stress. The physiological function of neuroglobin remains unclear. Here, we report a novel function of neuroglobin in neurite development. Knocking-down neuroglobin exhibited a prominent neurite-deficient phenotype in mouse neuroblastoma N2a cells. Silencing neuroglobin prevented neurite outgrowth, while ectopic expression of neuroglobin but not homologous cytoglobin promoted neurite outgrowth of N2a cells upon serum withdrawal. In primary cultured rat cerebral cortical neurons, neuroglobin was upregulated and preferentially distributed in neurites during neuronal development. Overexpression of neuroglobin but not cytoglobin in cultured cortical neurons promoted axonal outgrowth, while knocking-down of neuroglobin retarded axonal outgrowth. Neuroglobin overexpression suppressed phosphatase and tensin homolog (PTEN) but increased Akt phosphorylation during neurite induction. Bimolecular fluorescence complementation and glutathione S-transferase pull-down assays revealed that neuroglobin and various mutants (E53Q, E118Q, K119N, H64A, H64L, and Y44D) bound with Akt and PTEN differentially. Neuroglobin E53Q showed a prominent reduced PTEN binding but increased Akt binding, resulting in decreased p-PTEN, increased p-Akt, and increased neurite length. Taken together, we demonstrate a critical role of neuroglobin in neuritogenesis or development via interacting with PTEN and Akt differentially to activate phosphatidylinositol 3-kinase/Akt pathway, providing potential therapeutic applications of neuroglobin for axonopathy in neurological diseases.


Assuntos
Diferenciação Celular/genética , Globinas/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neuritos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Células Cultivadas , Globinas/biossíntese , Globinas/genética , Células HEK293 , Humanos , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neuroglobina , PTEN Fosfo-Hidrolase/genética , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos
17.
Glia ; 61(12): 2063-77, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24123203

RESUMO

Astrocyte activation is a hallmark of central nervous system injuries resulting in glial scar formation (astrogliosis). The activation of astrocytes involves metabolic and morphological changes with complex underlying mechanisms, which should be defined to provide targets for astrogliosis intervention. Astrogliosis is usually accompanied by an upregulation of glial fibrillary acidic protein (GFAP). Using an in vitro scratch injury model, we scratched primary cultures of cerebral cortical astrocytes and observed an influx of calcium in the form of waves spreading away from the wound through gap junctions. Using the calcium blocker BAPTA-AM and the JNK inhibitor SP600125, we demonstrated that the calcium wave triggered the activation of JNK, which then phosphorylated the transcription factor c-Jun to facilitate the binding of AP-1 to the GFAP gene promoter to switch on GFAP upregulation. Blocking calcium mobilization with BAPTA-AM in an in vivo stab wound model reduced GFAP expression and glial scar formation, showing that the calcium signal, and the subsequent regulation of downstream signaling molecules, plays an essential role in brain injury response. Our findings demonstrated that traumatic scratch injury to astrocytes triggered a calcium influx from the extracellular compartment and activated the JNK/c-Jun/AP-1 pathway to switch on GFAP expression, identifying a previously unreported signaling cascade that is important in astrogliosis and the physiological response following brain injury.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Genes jun/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fator de Transcrição AP-1/metabolismo , Animais , Astrócitos/citologia , Sinalização do Cálcio/genética , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Gliose/genética , Camundongos , Camundongos Endogâmicos ICR , Fator de Transcrição AP-1/genética , Ativação Transcricional
18.
Biochem Biophys Res Commun ; 437(1): 87-93, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23796709

RESUMO

Piperlongumine (PL), a natural alkaloid isolated from the long pepper, may have anti-cancer properties. It selectively targets and kills cancer cells but leaves normal cells intact. Here, we reported that PL selectively killed glioblastoma multiforme (GBM) cells via accumulating reactive oxygen species (ROS) to activate JNK and p38. PL at 20µM could induce severe cell death in three GBM cell lines (LN229, U87 and 8MG) but not astrocytes in cultures. PL elevated ROS prominently and reduced glutathione levels in LN229 and U87 cells. Antioxidant N-acetyl-L-cysteine (NAC) completely reversed PL-induced ROS accumulation and prevented cell death in LN229 and U87 cells. In LN229 and U87 cells, PL-treatment activated JNK and p38 but not Erk and Akt, in a dosage-dependent manner. These activations could be blocked by NAC pre-treatment. JNK and p38 specific inhibitors, SB203580 and SP600125 respectively, significantly blocked the cytotoxic effects of PL in LN229 and U87 cells. Our data first suggests that PL may have therapeutic potential for one of the most malignant and refractory tumors GBM.


Assuntos
Dioxolanos/farmacologia , Glioblastoma/enzimologia , Glioblastoma/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dioxolanos/química , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Humanos
19.
Front Med ; 6(2): 173-86, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22660977

RESUMO

Infectious diseases, mostly caused by bacteria and viruses but also a result of fungal and parasitic infection, have been one of the most important public health concerns throughout human history. The first step in combating these pathogens is to get a timely and accurate diagnosis at an affordable cost. Many kinds of diagnostics have been developed, such as pathogen culture, biochemical tests and serological tests, to help detect and fight against the causative agents of diseases. However, these diagnostic tests are generally unsatisfactory because they are not particularly sensitive and specific and are unable to deliver speedy results. Nucleic acid-based diagnostics, detecting pathogens through the identification of their genomic sequences, have shown promise to overcome the above limitations and become more widely adopted in clinical tests. Here we review some of the most popular nucleic acid-based diagnostics and focus on their adaptability and applicability to routine clinical usage. We also compare and contrast the characteristics of different types of nucleic acid-based diagnostics.


Assuntos
Doenças Transmissíveis/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Doenças Transmissíveis/microbiologia , Humanos , Reação em Cadeia da Polimerase , Saúde Pública , Replicação de Sequência Autossustentável
20.
J Neurosci Res ; 89(12): 2041-51, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21544851

RESUMO

We observed nuclear swelling in glutamate (Glu)-treated astrocytes that was concomitant with but independent of astrocytic cell swelling. We confirmed Glu-induced nuclear swelling with nuclei isolated from astrocytes. Ammonia is metabolically related to Glu and could induce a nuclear swelling in intact astrocytes but shrinkage in isolated nuclei. Other compounds such as glutamine, aspartate, taurine, glycine, and ATP did not cause any nuclear swelling in isolated nuclei of astrocytes. Surprisingly, Glu and ammonia did not induce nuclear swelling in microglia, C6, HEK 293, or Hep G2 cell lines in cultures and their isolated nuclei. The Glu- and ammonia-induced nuclear size changes appear to be a specific response of astrocytes to these two closely related metabolic compounds.


Assuntos
Amônia/farmacologia , Astrócitos/ultraestrutura , Núcleo Celular/ultraestrutura , Ácido Glutâmico/farmacologia , Amônia/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Células Cultivadas , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...