Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 40(Pt A): 21-29, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28946417

RESUMO

The spent cathode carbon (SCC) from aluminum electrolysis was subjected to caustic leaching to investigate the different effects of ultrasound-assisted and traditional methods on element fluorine (F) leaching rate and leaching residue carbon content. Sodium hydroxide (NaOH) dissolved in deionized water was used as the reaction system. Through single-factor experiments and a comparison of two leaching techniques, the optimum F leaching rate and residue carbon content for ultrasound-assisted leaching process were obtained at a temperature of 70°C, residue time of 40min, initial mass ratio of alkali to SCC (initial alkali-to-material ratio) of 0.6, liquid-to-solid ratio of 10mL/g, and ultrasonic power of 400W, respectively. Under the optimal conditions, the leaching residue carbon content was 94.72%, 2.19% larger than the carbon content of traditional leaching residue. Leaching wastewater was treated with calcium chloride (CaCl2) and bleaching powder and the treated wastewater was recycled caustic solution. All in all, benefiting from advantage of the ultrasonication effects, ultrasound-assisted caustic leaching on spent cathode carbon had 55.6% shorter residue time than the traditional process with a higher impurity removal rate.

2.
Ultrason Sonochem ; 41: 608-618, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29137793

RESUMO

Spent cathode carbon (SCC) from aluminum electrolysis has been treated in ultrasonic-assisted caustic leaching and acid leaching process, and purified SCC used as carbon source to synthesize silicon carbide (SiC) was investigated. Chemical and mineralogical properties have been characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and thermogravimetry and differential scanning calorimetry (TGA-DSC). Various experimental factors temperature, time, liquid-solid ratio, ultrasonic power, and initial concentration of alkali or acid affecting on SCC leaching result were studied. After co-treatment with ultrasonic-assisted caustic leaching and acid leaching, carbon content of leaching residue was 97.53%. SiC power was synthesized by carbothermal reduction at 1600 °C, as a result of yield of 76.43%, and specific surface area of 4378 cm2/g. This is the first report of using purified SCC and gangue to prepare SiC. The two industrial wastes have been used newly as secondary sources. Furthermore, ultrasonic showed significant effect in SCC leaching process.

3.
Water Sci Technol ; 76(7-8): 1687-1696, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28991785

RESUMO

This paper examines a novel method of regenerating saturated activated carbon after adsorption of complex phenolic, polycyclic aromatic hydrocarbons with low energy consumption by using superheated water pretreatment combined with CO2 activation. The effects of the temperature of the superheated water, liquid-solid ratio, soaking time, activation temperature, activation time, and CO2 flow rate of regeneration and adsorption of coal-powdered activated carbon (CPAC) were studied. The results show that the adsorption capacity of iodine values on CPAC recovers to 102.25% of the fresh activated carbon, and the recovery rate is 79.8% under optimal experimental conditions. The adsorption model and adsorption kinetics of methylene blue on regenerated activated carbon (RAC) showed that the adsorption process was in accordance with the Langmuir model and the pseudo-second-order kinetics model. Furthermore, the internal diffusion process was the main controlling step. The surface properties, Brunauer-Emmett-Teller (BET) surface area, and pore size distribution were characterized by Fourier transform infrared spectroscopy (FT-IR) and BET, which show that the RAC possesses more oxygen-containing functional groups with a specific surface area of 763.39 m2 g-1 and a total pore volume of 0.3039 cm3 g-1. Micropores account for 79.8% and mesopores account for 20.2%.


Assuntos
Dióxido de Carbono/química , Carvão Vegetal/química , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Adsorção , Difusão , Cinética , Azul de Metileno/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Água , Poluentes Químicos da Água/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...