Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(7): 073202, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427885

RESUMO

The electric dipole moment (EDM) plays a crucial role in determining the interaction strength of an atom with electric fields, making it paramount to quantum technologies based on coherent atomic control. We propose a scheme for engineering the potential in a Paul trap to realize a two-level quantum system with a giant EDM formed by the motional states of a trapped electron. We show that, under realistic experimental conditions, our system exhibits enhanced EDMs compared to those attainable with Rydberg atoms, serving as a complementary counterpart in the megahertz (MHz) resonance-frequency range. Furthermore, we show that such artificial atomic dipoles can be efficiently initialized, read out, and coherently controlled, thereby providing a potential platform for quantum technologies such as ultrahigh-sensitivity electric-field sensing.

2.
Phys Rev Lett ; 126(1): 010502, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33480770

RESUMO

Quantum criticality, as a fascinating quantum phenomenon, may provide significant advantages for quantum sensing. Here we propose a dynamic framework for quantum sensing with a family of Hamiltonians that undergo quantum phase transitions (QPTs). By giving the formalism of the quantum Fisher information (QFI) for quantum sensing based on critical quantum dynamics, we demonstrate its divergent feature when approaching the critical point. We illustrate the basic principle and the details of experimental implementation using quantum Rabi model. The framework is applicable to a variety of examples and does not rely on the stringent requirement for particular state preparation or adiabatic evolution. It is expected to provide a route towards the implementation of criticality-enhanced quantum sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...