Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1064359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704163

RESUMO

Most studies have shown that foliar silicon (Si) spraying can reduce the risk of rice quality safety caused by cadmium (Cd) contamination. However, it has recently been found that different rice varieties have different responses to Si. Therefore, we selected six rice varieties (YHSM, YXY1179, YXYLS, JLK1377, MXZ2, and YLY900) to compare the differences in the effects of leaf spray on Cd accumulation among different varieties. According to the change in Cd content in brown rice after Si application, the six rice varieties were divided into two types: Si-inhibited varieties (JLY1377, MXZ2, LY900, and YXYLS) and Si-stimulated varieties (WY1179 and YHSM). For Si-inhibited varieties, the Cd content of rice was reduced by 13.5%-65.7% after Si application. At the same time, the Cd content of the root, stem, leaf, panicle, and glume decreased to different degrees, the Cd content of the cell wall component increased by 2.2%-37.6%, the extraction state of Cd with strong mobile activity (ethanol-extracted and deionized water-extracted) was changed to the extraction state of Cd with weak mobile activity (acetic acid-extracted and hydrochloric acid-extracted), and the upward transport coefficient of different parts was reduced. For Si-stimulated varieties, Si application increased the Cd content of rice by 15.7%-24.1%. At the same time, the cell soluble component Cd content significantly increased by 68.4%-252.4% and changed the weakly mobile extraction state Cd to the strong mobile extraction state, increasing the upward transport coefficient of different sites. In conclusion, different rice varieties have different responses to Si. Foliar Si spraying inhibits the upward migration of Cd of Si-inhibited varieties, thereby reducing the Cd content of rice, but it has the opposite effect on Si-stimulated varieties. This result reminds us that we need to consider the difference in the effect of varieties in the implementation of foliar Si spraying in remediation of Cd-contaminated paddy fields.

2.
Chemosphere ; 279: 130546, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33894520

RESUMO

The transformation mechanisms of Cr(VI) in agricultural soils at the molecular level remain largely unknown due to the multitude of abiotic and biotic factors. In this study, the different speciation and distribution of Cr in two types of agricultural soil (Ultisol and Fluvo-aquic soils) after two weeks of aging was investigated using synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy, microfocused X-ray fluorescence (µ-XRF) and X-ray transmission microscopy (STXM). The microbial community structure of the two soils was also analyzed via high-throughput sequencing of 16S rRNA. Cr(VI) availability was relatively lower in the Ultisol than in the Fluvo-aquic soil after aging. Cr K-edge bulk XANES and STXM analysis indicated that Cr(VI) was reduced to Cr(III) in both soils. µ-XRF analysis and STXM analysis indicated the predominant association of Cr with Mn/Fe oxides and/or organo-Fe oxides in both soils. Additionally, STXM-coupled imaging and multiedge XANES analyses demonstrated that carboxylic groups were involved in the reduction of Cr(VI) and subsequent retention of Cr(III). 16S rRNA analysis showed considerably different bacterial communities across the two soils. Redundancy analysis (RDA) suggested that soil properties, including the total carbon content, Fe oxide component and pH, were closely linked to Cr(VI)-reducing functional bacteria in the Ultisol, including chromium-reducing bacteria (CRB) (e.g., Bacillus sp.) and dissimilatory iron-reducing (DIRB) (e.g., Shewanella sp.) bacteria, which possibly promoted Cr(VI) reduction. These findings shed light on the molecular-level transformation mechanisms of Cr(VI) in agricultural soils, which facilitates the effective management of Cr-enriched farmland.


Assuntos
Poluentes do Solo , Solo , Cromo/análise , Oxirredução , RNA Ribossômico 16S/genética , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...