Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008966

RESUMO

Spin torque nano-oscillators possessing fast nonlinear dynamics and short-term memory functions are potentially able to achieve energy-efficient neuromorphic computing. In this study, we introduce an activation-state controllable spin neuron unit composed of vertically coupled vortex spin torque oscillators and a V-I source circuit is proposed and used to build an energy-efficient sparse reservoir computing system to solve nonlinear dynamic system prediction task. Based on micromagnetic and electronic circuit simulation, the Mackey-Glass chaotic time series and the real motor vibration signal series can be predicted by the reservoir computing system with merely 20 and 100 spin neuron units, respectively. Further study shows that the proposed sparse reservoir system could reduce energy consumption without significantly compromising performance, and a minimal response from inactivated neurons is crucial for maintaining the system's performance. The accuracy and signal processing speed show the potential of the proposed sparse reservoir computing system for high performance and low-energy neuromorphic computing. .

2.
Opt Express ; 31(10): 16781-16794, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157750

RESUMO

Whispering gallery mode (WGM) resonators provide an important platform for fine measurement thanks to their small size, high sensitivity, and fast response time. Nevertheless, traditional methods focus on tracking single-mode changes for measurement, and a great deal of information from other resonances is ignored and wasted. Here, we demonstrate that the proposed multimode sensing contains more Fisher information than single mode tracking and has great potential to achieve better performance. Based on a microbubble resonator, a temperature detection system has been built to systematically investigate the proposed multimode sensing method. After the multimode spectral signals are collected by the automated experimental setup, a machine learning algorithm is used to predict the unknown temperature by taking full advantage of multiple resonances. The results show the average error of 3.8 × 10-3°C within the range from 25.00°C to 40.00°C by employing a generalized regression neural network (GRNN). In addition, we have also discussed the influence of the consumed data resource on its predicted performance, such as the amount of training data and the case of different temperate ranges between the training and test data. With high accuracy and large dynamic range, this work paves the way for WGM resonator-based intelligent optical sensing.

3.
Opt Express ; 30(13): 24062-24071, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225075

RESUMO

A sensitive DC magnetic field sensor is constructed by measuring the signal-to-noise ratio of an AC-modulated magnetic field at a particular frequency from an optical whispering gallery mode microcapillary resonator. The sensing element consists of an optical whispering gallery mode microcapillary resonator bonded to a magnetostrictive material that enables it to respond to external magnetic fields. A DC magnetic field sensitivity of 0.1703dB/Oe and a linear detection range from 4.8Oe to 65.7Oe are realized under an AC modulation field of 168.1kHz in the unshielded environment at room temperature. To our best knowledge, this sensitivity is about 2.3 times of the maximum sensitivity of other DC magnetic field sensors based on magnetic fluid or magnetostrictive material integrated fiber systems that use the dissipative sensing scheme. Furthermore, the sensor can operate at a stable temperature in the range of [-11∼45]°C, as long as the modulation frequency of the AC-modulation field is adjusted according to the ambient temperature. This sensor provides us with a novel DC magnetic field sensing scheme, which may play a role in industrial fields related to current and position detection in the future.

4.
ACS Appl Mater Interfaces ; 14(18): 21668-21676, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35471960

RESUMO

The current-induced magnetization switching and damping-like field in Pt/(Co/Pt)/PtMn trilayer films prepared with and without an in situ in-plane field of 600 Oe have been studied systematically. In the presence of the in situ field, a small in-plane bias field (HEB) is observed for films with PtMn thickness ≥5 nm, while there is no observable HEB for PtMn thickness ≤3 nm. Nevertheless, a field-free switching of perpendicular magnetization of Co/Pt is observed for all the films with the PtMn thickness of 1-7 nm. On the other hand, without the presence of the in situ field, HEB and field-free switching are not seen. Furthermore, the damping-like fields (HDL) are much enhanced in the presence of the in situ field, and the increasement can be up to 47%. We further revealed that the spin current is mainly from the Pt layer, while the noncollinear spin configuration at the interface caused by the in situ in-plane field may play a role in the HDL enhancement. Micromagnetic simulations indicate that the canting of antiferromagnet PtMn spins plays an important role in the field-free switching. Our findings clarify the source of spin current in the trilayer films and provide an easier approach to field-free switching and HDL enhancement for future low-power spintronic devices.

5.
Opt Lett ; 45(16): 4440-4443, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32796978

RESUMO

A new, to the best of our knowledge, experimental mechanism is reported to realize the identification of gas by a microcavity sensor. Instead of measuring the change in the environment refractive index or absorption, the gas is detected indirectly and indentified by using the thermo-optics effect of a high-quality-factor microbubble resonator. When passing gas through the microbubble, the pressure induces a geometric deformation and thus an observable frequency shift, and the thermal bistability response varies due to the higher heat dissipation by gas molecules. With the two output parameters, we can unambiguously distinguish gas with different molecular weights, e.g., He, N2, and CO2. Our demonstration opens a new avenue of microcavity sensing by using indirect interaction between light and matter, realizing a multiple-parameter sensing approach for gas or solvent identification.

6.
Opt Lett ; 45(3): 754-757, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004302

RESUMO

In this Letter, Autler-Townes splitting and induced transparency windows are observed in a multimode microfiber knot. The microfiber knot is fabricated using tapered single-mode fiber, with the knot position located at the transition area of the tapered fiber. The spectrum, in analogy to Autler-Townes splitting, derives from the mode splitting of two high-order excited modes, which is theoretically explained by the multimode transfer matrix method. Moreover, without adding resonators, two induced transparency windows are realized with the tunable coupling coefficients and phase difference of excited knot modes. The tunable, easily fabricated, compact, and robust microfiber knot has potential applications in optical sensing, filters, slow light, and optical switching.

7.
Appl Opt ; 54(6): 1285-9, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25968189

RESUMO

We propose a single-ring-resonator-based add/drop interferometer and theoretically investigate the transmission characteristics. Due to coherent interference of two resonant pathways, an electromagnetically induced-transparency (EIT)-like spectrum is produced and the line shapes of the transmission spectra are tunable by controlling the coupling coefficients between the waveguide and ring resonator. We observe the EIT-like behavior in a fiber system which agrees well with the theoretical analysis. The proposed configuration has potential applications in tunable delay lines.

8.
Appl Opt ; 52(20): 4884-9, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23852203

RESUMO

We theoretically study a single-ring-resonator-based add/drop interferometer to achieve tunable Fano resonance. The Fano resonance results from the interference of two resonant beams propagating in the ring resonator. The line shapes of the Fano resonance are tunable by controlling the coupling coefficients between the waveguide and ring resonator. The spectra of the drop port and through port of the add/drop interferometer are horizontally mirror-symmetric. A box-like spectral response can be produced with the proper coupling coefficient owing to the double resonances. When the phase difference between the two light inputs to the add/drop interferometer is compensated, a doubled free spectral range can be obtained.

9.
Opt Express ; 21(2): 2212-9, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23389202

RESUMO

We present our experimental results on the measurements of excited state dynamics in 2, 9, 16, 23-phenoxy-phthalocyanine (Pc1) and 2, 9, 16, 23-phenoxy-phthalocyanine-zinc (Pc2) using the pump-probe experiment. The results show that the lifetime of the first triplet excited state of the Pc2 longer than Pc1. The lifetimes of the triplet excited state for Pc2 and Pc1 are 12.8 µs and 10.1 µs at the same intensity, respectively. Moreover, analysis of modulation characteristics of all-optical switching (A-OS) shows that the stronger the light intensity of the pump light is, the smaller the normalized transmittance is, and the lower the A-OS response time is. The consequences of such short lifetimes are also discussed in view of the strong A-OS properties of these molecules.


Assuntos
Indóis/química , Lasers , Cristais Líquidos/química , Processamento de Sinais Assistido por Computador , Indóis/efeitos da radiação , Isoindóis , Cristais Líquidos/efeitos da radiação , Teste de Materiais , Espalhamento de Radiação , Telecomunicações
10.
Appl Opt ; 51(36): 8873-6, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23262627

RESUMO

We numerically investigate the properties of the nested fiber ring resonator coupled Mach-Zehnder interferometer as a sensor. By introducing the phase bias of 0.5π in the reference arm, the two output intensities exhibit sharp asymmetric line shapes around the resonance wavelength. Utilizing the intensity interrogation, we analyze the effect of parameters on the sensitivity and the detection limit. For the 30 dB signal-noise system, the sensitivity and the detection limit can achieve 4.0866/°C and 7.341×10(-3)°C, respectively; the results indicate that this structure is suitable for high-sensitivity measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...