Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sheng Li Xue Bao ; 76(3): 385-393, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38939933

RESUMO

The purpose of the present study was to investigate the modeling time of type 2 diabetes mellitus (T2DM) mouse model induced by high fat diet (HFD) alone and the effects of HFD on the pathology and function of organs related to glucose and lipid metabolism. C57BL/6 mice were fed with normal diet (NC group) or HFD (HFD group). The time of successful T2DM modeling was evaluated by measuring body weight, fasting blood glucose and glucose tolerance at time points of 0, 4, 8, 12, 16 and 20 weeks. The functional and pathological changes of glucose and lipid metabolism related organs were evaluated by detecting insulin tolerance, plasma lipid levels, vascular function, as well as HE staining of pancreas and liver. The results showed that compared with the NC group, the HFD group had significantly increased body weight after 8 weeks of HFD. After 16 weeks of HFD, the HFD group exhibited impaired fasting glucose tolerance. After 20 weeks of HFD, the HFD group mice reached diabetic state, showing impaired glucose tolerance and insulin resistance, islet volume reduction and vacuolar degeneration; Large number of lipid droplets appeared in liver cells, and the level of AMPK phosphorylation in liver tissue was significantly increased in the HFD groups, compared with the NC group; There was endothelial dependent diastolic dysfunction in the thoracic aorta of the HFD group; Compared with the NC group, the HFD group mice showed a significant increase in urinary protein levels. These results suggest that T2DM mouse model can be successfully established by HFD induction alone for 20 weeks. The model is characterized by insulin resistance, fatty liver, hyperlipidemia, vascular dysfunction, renal dysfunction and pathological changes of islet and liver cells, which are similar to those of T2DM patients. Therefore it can be used as an ideal animal model for T2DM research.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Camundongos , Dieta Hiperlipídica/efeitos adversos , Masculino , Resistência à Insulina , Metabolismo dos Lipídeos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Fígado/metabolismo , Fígado/patologia
2.
Dev Cell ; 59(7): 882-897.e6, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38387460

RESUMO

Attenuated inflammatory response is a property of embryonic stem cells (ESCs). However, the underlying mechanisms are unclear. Moreover, whether the attenuated inflammatory status is involved in ESC differentiation is also unknown. Here, we found that autophagy-related protein ATG5 is essential for both attenuated inflammatory response and differentiation of mouse ESCs and that attenuation of inflammatory signaling is required for mouse ESC differentiation. Mechanistically, ATG5 recruits FBXW7 to promote ubiquitination and proteasome-mediated degradation of ß-TrCP1, resulting in the inhibition of nuclear factor κB (NF-κB) signaling and inflammatory response. Moreover, differentiation defects observed in ATG5-depleted mouse ESCs are due to ß-TrCP1 accumulation and hyperactivation of NF-κB signaling, as loss of ß-TrCP1 and inhibition of NF-κB signaling rescued the differentiation defects. Therefore, this study reveals a previously uncharacterized mechanism maintaining the attenuated inflammatory response in mouse ESCs and further expands the understanding of the biological roles of ATG5.


Assuntos
Proteína 5 Relacionada à Autofagia , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias , Células-Tronco Embrionárias Murinas/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Proteína 5 Relacionada à Autofagia/metabolismo
3.
Autophagy ; : 1-15, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682088

RESUMO

ABBREVIATIONS: ATG: autophagy related; BECN1: beclin 1; cAMP: cyclic adenosine monophosphate; dsDNA: double-stranded DNA; EMT: epithelial-mesenchymal transition; IFN: interferon; ISCs: intestinal stem cells; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK/JNK: mitogen-activated protein kinase/c-Jun N-terminal kinases; MTOR: mechanistic target of rapamycin kinase; STING1: stimulator of interferon response cGAMP interactor 1; UVRAG: UV radiation resistance associated; VPS: vacuolar protein sorting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...