Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4626, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409340

RESUMO

The decomposed plastic products in the natural environment evolve into tiny plastic particles with characteristics such as small size, lightweight, and difficulty in removal, resulting in a significant pollution issue in aquatic environments. Significant progress has been made in microplastic separation technology benefiting from microfluidic chips in recent years. Based on the mechanisms of microfluidic control technology, this study investigates the enrichment and separation mechanisms of polystyrene particles in an unbuffered solution. The Faraday reaction caused by the bipolar electrodes changes the electric field gradient and improves the separation efficiency. We also propose  an evaluation scheme to measure the separation efficiency. Finite element simulations are conducted to parametrically analyze the influence of applied voltages, channel geometry, and size of electrodes on plastic particle separation. The numerical cases indicate that the electrode-installed microfluidic channels separate microplastic particles effectively and precisely. The electrodes play an important role in local electric field distribution and trigger violent chemical reactions. By optimizing the microchannel structure, applied voltages, and separation channel angle, an optimal solution for separating microplastic particles can be found. This study could supply some references to control microplastic pollution in the future.

2.
ACS Appl Mater Interfaces ; 13(51): 61196-61204, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34918896

RESUMO

Thermo-responsive smart windows that control solar transmission are expected to be the promising solution to excessive building energy consumption and overheating of solar cell devices. The two performance indices, namely, the luminous transmission (Tlum) and the solar modulation (ΔTsol), are often intrinsically limited by conventional thermo-responsive materials, which restrict their applications in smart windows. Alternatively, constructing a deformable surface morphology of smart windows can be an effective strategy to modulate the solar transmission. Here, we report a new category of thermo-responsive smart windows with a deformable surface morphology, which can be custom designed to achieve both desirable ΔTsol and Tlum according to the sunlight incident angles of actual applications. This design is based on a thermo-responsive shape memory polymer and an optical coating, which is termed the butterfly-wing-like smart window (BSW). The BSW reversibly transforms from a temporary shape of flat topography to a predefined original shape of tilted configuration upon heating. It is demonstrated that the BSW has a high ΔTsol of 32.6% and an excellent Tlum(average) of 64.5%. This work provides a new design strategy and mechanism for thermo-responsive smart windows.

3.
Sci Rep ; 2: 988, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23248751

RESUMO

Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties.


Assuntos
Anisotropia , Transferência de Energia , Fricção , Modelos Teóricos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...