Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(6): 2318-2332, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38832694

RESUMO

Tuberculosis (TB) is a prevalent and severe infectious disease that poses a significant threat to human health. However, it is frequently disregarded as there are not enough quick and accurate ways to diagnose tuberculosis. Here, we develop a strategy for tuberculosis detection to address the challenges, including an experimental strategy, namely, Double Adapter Directional Capture sequencing (DADCSeq), an easily operated and low-cost whole transcriptome sequencing method, and a computational method to identify hub differentially expressed genes as well as the diagnosis of TB based on whole transcriptome data using DADCSeq on peripheral blood mononuclear cells (PBMCs) from active TB and latent TB or healthy control. Applying our approach to create a robust and stable TB multi-mRNA risk probability model (TBMMRP) that can accurately distinguish active and latent TB patients, including active TB and healthy controls in clinical cohorts, this diagnostic biomarker was successfully validated by several independent cross-platform cohorts with favorable performance in differentiating active TB from latent TB or active TB from healthy controls and further demonstrated superior or similar diagnostic accuracy compared to previous diagnostic markers. Overall, we develop a low-cost and effective strategy for tuberculosis diagnosis; as the clinical cohort increases, we can expand to different disease kinds and learn new features through our disease diagnosis strategy.


Assuntos
Biomarcadores , Transcriptoma , Tuberculose , Humanos , Tuberculose/diagnóstico , Tuberculose/microbiologia , Biomarcadores/análise , Biomarcadores/sangue , Tuberculose Latente/diagnóstico , Análise Custo-Benefício , Leucócitos Mononucleares , Perfilação da Expressão Gênica/métodos , Feminino , Mycobacterium tuberculosis/genética , Masculino , Adulto
2.
Proc Natl Acad Sci U S A ; 121(25): e2400568121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857392

RESUMO

Nano ferroelectrics holds the potential application promise in information storage, electro-mechanical transformation, and novel catalysts but encounters a huge challenge of size limitation and manufacture complexity on the creation of long-range ferroelectric ordering. Herein, as an incipient ferroelectric, nanosized SrTiO3 was indued with polarized ordering at room temperature from the nonpolar cubic structure, driven by the intrinsic three-dimensional (3D) tensile strain. The ferroelectric behavior can be confirmed by piezoelectric force microscopy and the ferroelectric TO1 soft mode was verified with the temperature stability to 500 K. Its structural origin comes from the off-center shift of Ti atom to oxygen octahedron and forms the ultrafine head-to-tail connected 90° nanodomains about 2 to 3 nm, resulting in an overall spontaneous polarization toward the short edges of nanoparticles. According to the density functional theory calculations and phase-field simulations, the 3D strain-related dipole displacement transformed from [001] to [111] and segmentation effect on the ferroelectric domain were further proved. The topological ferroelectric order induced by intrinsic 3D tensile strain shows a unique approach to get over the nanosized limitation in nanodevices and construct the strong strain-polarization coupling, paving the way for the design of high-performance and free-assembled ferroelectric devices.

3.
Nat Commun ; 15(1): 2252, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480744

RESUMO

Zero thermal expansion (ZTE) alloys with high mechanical response are crucial for their practical usage. Yet, unifying the ZTE behavior and mechanical response in one material is a grand obstacle, especially in multicomponent ZTE alloys. Herein, we report a near isotropic zero thermal expansion (αl = 1.10 × 10-6 K-1, 260-310 K) in the natural heterogeneous LaFe54Co3.5Si3.35 alloy, which exhibits a super-high toughness of 277.8 ± 14.7 J cm-3. Chemical partition, in the dual-phase structure, assumes the role of not only modulating thermal expansion through magnetic interaction but also enhancing mechanical properties via interface bonding. The comprehensive analysis reveals that the hierarchically synergistic enhancement among lattice, phase interface, and heterogeneous structure is significant for strong toughness. Our findings pave the way to tailor thermal expansion and obtain prominent mechanical properties in multicomponent alloys, which is essential to ultra-stable functional materials.

4.
Appl Opt ; 62(26): 6916-6923, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707030

RESUMO

Vector measurement is a vital measurement item during the satellite assembly, integration, and test (AIT) process. With the increasing popularity of commercial spaceflight, the development cycle of a satellite is shorter, and the number of satellites has been growing rapidly. The traditional on-site vector measurement method is inefficient and significantly affects the development cycle of the satellite. Therefore, it is of utter importance to propose an online high-precision automatic vector measurement system. The most challenging step of the online automatic vector measurement is coarse alignment because a cubic prism must be identified, and the normal direction of its surface must be calculated at a certain precision in the unstructured environment during the coarse alignment step. A reflection-based vision guide method was proposed to identify and calculate the normal direction of the cubic prism. The working principle and advantage of the proposed vision guide system were described in detail. What is more, the calibration and calculation methods of the proposed vision guide system were also presented. Finally, experiments were conducted to verify the effectiveness of the proposed method.

5.
J Am Chem Soc ; 145(32): 17856-17862, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530501

RESUMO

Metals typically crystallize in highly symmetric structures due to their nondirectional and nonsaturated metallic bonds. Here, we report that terbium metal in its ferromagnetic state adopts an unusual low-symmetry orthorhombic structure with a Cmcm space group. A similar structure has been previously observed only in a few actinide metals with bonding 5f electrons at ambient pressure, such as uranium, neptunium, and plutonium, but with different nearest coordination numbers and bond-length variations. The Tb atom occupies the 4c site (0, ∼0.1661, 1/4), building up -[Tb-Tb]- layers stacking along the b-axis. Our first-principles many-body calculations of the crystal field splitting in the correlated Tb 4f-shell demonstrate that the Cmcm structure for ferromagnetic terbium is stabilized by magneto-elastic forces due to a secondary order of quadrupolar moments in the ferromagnetic state. These findings are significant for further understanding of the nature of terbium, including its electron structure, energy bands, phonons, and magnetism.

6.
Nat Commun ; 14(1): 3135, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253768

RESUMO

Rapid progress in modern technologies demands zero thermal expansion (ZTE) materials with multi-property profiles to withstand harsh service conditions. Thus far, the majority of documented ZTE materials have shortcomings in different aspects that limit their practical utilization. Here, we report on a superior isotropic ZTE alloy with collective properties regarding wide operating temperature windows, high strength-stiffness, and cyclic thermal stability. A boron-migration-mediated solid-state reaction (BMSR) constructs a salient "plum pudding" structure in a dual-phase Er-Fe-B alloy, where the precursor ErFe10 phase reacts with the migrated boron and transforms into the target Er2Fe14B (pudding) and α-Fe phases (plum). The formation of such microstructure helps to eliminate apparent crystallographic texture, tailor and form isotropic ZTE, and simultaneously enhance the strength and toughness of the alloy. These findings suggest a promising design paradigm for comprehensive performance ZTE alloys.

7.
Adv Mater ; 34(34): e2109592, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35772730

RESUMO

Zero thermal expansion (ZTE) alloys as dimensionally stable materials are usually challenged by harsh environmental erosion, since ZTE and corrosion resistance are generally mutually exclusive. Here, a high-performance alloy, Zr0.8 Ta0.2 Fe1.7 Co0.3 , is reported, that shows isotropic ZTE behavior (αl  = 0.21(2) × 10-6 K-1 ) in a wide temperature range of 5-360 K, high corrosion resistance in a seawater-like solution compared with classic Invar and stainless Invar, and excellent cyclic thermal and structural stabilities. Such stabilities are attributed to the cubic symmetry, the controllable magnetic order, and the spontaneously formed passive film with Ta and Zr chemical modifications. The results are evidenced by X-ray/neutron diffraction, microscopy, spectroscopy, and electrochemistry investigations. Such multiple stabilities have the potential to broaden the robust applications of ZTE alloys, especially in marine services.

8.
Nat Commun ; 12(1): 4701, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349119

RESUMO

Zero thermal expansion (ZTE) alloys possess unique dimensional stability, high thermal and electrical conductivities. Their practical application under heat and stress is however limited by their inherent brittleness because ZTE and plasticity are generally exclusive in a single-phase material. Besides, the performance of ZTE alloys is highly sensitive to change of compositions, so conventional synthesis methods such as alloying or the design of multiphase to improve its thermal and mechanical properties are usually inapplicable. In this study, by adopting a one-step eutectic reaction method, we overcome this challenge. A natural dual-phase composite with ZTE and plasticity was synthesized by melting 4 atom% holmium with pure iron. The dual-phase alloy shows moderate plasticity and strength, axial zero thermal expansion, and stable thermal cycling performance as well as low cost. By using synchrotron X-ray diffraction, in-situ neutron diffraction and microscopy, the critical mechanism of dual-phase synergy on both thermal expansion regulation and mechanical property enhancement is revealed. These results demonstrate that eutectic reaction is likely to be a universal and effective method for the design of high-performance intermetallic-compound-based ZTE alloys.

9.
Chem Commun (Camb) ; 56(60): 8384-8387, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32573572

RESUMO

By a simple cross-substitution of A-site Li/Na in tetragonal tungsten bronze (TTB) structures, we successfully synthesized a new niobate compound, Pb2.15(Li0.25Na0.75)0.7Nb5O15, with a superstructure. This compound exhibits a strong second harmonic generation (SHG) up to ∼47 × KDP. The large SHG response is related to strengthened local distortion, manifesting cross-substitution as a possibly general route to improve the NLO effect in stiff and low symmetric structures.

10.
Environ Sci Pollut Res Int ; 27(12): 13467-13476, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32026369

RESUMO

How to reasonably manage and reutilize the waste expired liquid medicines has always been a puzzling public concern. For this reason, the waste expired medicine of donkey-hide gelatin pulp was recycled by hydrothermal carbonization and hard template for N/S co-doped hard carbon material, and its electrochemical Na-storage performances were also evaluated. The results showed that the resultant N/S co-doped hard carbon material manifested the morphology of hollow nano-spheres with the mean diameter of about 242.3 nm and the shell thickness of about 15 nm; N and S elements evenly distributed in carbon structure by in situ co-doping. Furthermore, N/S co-doped hard carbon also delivered the satisfactory electrochemical Na-storage capacities due to the synergistic effect of the unique hollow nano-spheres with thin shell and N/S co-doping. No doubt, the results would promote the circular economy mode of waste expired medicines.


Assuntos
Carbono , Gelatina , Animais , Eletrodos , Equidae , Sódio
11.
Appl Opt ; 58(31): 8362-8370, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873319

RESUMO

This paper presents a novel camera calibration method using a planar target with pure translation and a known translation distance. It only requires the straightness and position accuracy of the one-axis translational platform. There are theoretically no constraints among the normal direction of the planar target, the optical axis direction of the camera, and the moving direction of the translational platform. The paper analyzes the closed-form solution, followed by a nonlinear refinement based on the maximum likelihood criterion. Both computer simulation and real data are implemented to verify the effectiveness of the proposed method. Compared with Zhang's method, the proposed method realizes the camera calibration process automatically and evaluates the calibration process via the measurement accuracy of the calibrated camera, so it is a key factor to advance 3D computer vision one more step from expert to novice use.

12.
Inorg Chem ; 58(9): 5401-5405, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31017403

RESUMO

Metallic materials that exhibit negligible thermal expansion or zero thermal expansion (ZTE) have great merit for practical applications, but these materials are rare and their thermal expansions are difficult to control. Here, we successfully tailored the thermal expansion behaviors from strongly but abruptly negative to zero over wide temperature ranges in a series of (Gd,R)(Co,Fe)2 (R = Dy, Ho, Er) intermetallic compounds by tuning the composition to bring the first-order magnetic phase transition to second-order. Interestingly, an unusual isotropic ZTE property with a coefficient of thermal expansion of α l = 0.16(0) × 10-6 K-1 was achieved in cubic Gd0.25Dy0.75Co1.93Fe0.07 (GDCF) in the temperature range of 10-275 K. The short-wavelength neutron powder diffraction, synchrotron X-ray diffraction, and magnetic measurement studies evidence that this ZTE behavior was ascribed to the rare-earth-moment-dominated spontaneous volume magnetostriction, which can be controlled by an adjustable magnetic phase transition. The present work extends the scope of the ZTE family and provides an effective approach to exploring ZTE materials, such as by adjusting the magnetism or ferroelectricity-related phase transition in the family of functional materials.

13.
Sci Total Environ ; 630: 495-501, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29486442

RESUMO

Waste antibiotics into the natural environment are the large challenges to the environmental protection and the human health, and the unreasonable disposal of the expired antibiotics is a major pollution source. Herein, to achieve the innocent treatment and the resource recovery, the expired tetracycline was tried to be reutilized as the electrode active material in lithium ion battery (LIB) for the first time. The micro-structure and element component of the expired tetracycline were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Furthermore, the corresponding electrochemical performances were also investigated by galvanostatic charge/discharge and cyclic voltammetry (CV). To be satisfactory, the expired-tetracycline-based electrode delivered the initial specific discharge capacity of 371.6mAh/g and the reversible specific capacity of 304.1mAh/g after 200cycles. The decent results will not only offer an effective strategy to recycle the expired tetracycline, but also shed a new light on the cyclic economy and the sustainable development.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Reciclagem , Tetraciclina/química , Eletrodos , Íons , Óxidos/química , Espectroscopia Fotoeletrônica , Difração de Raios X
14.
Sensors (Basel) ; 17(12)2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29231890

RESUMO

Large-scale surfaces are prevalent in advanced manufacturing industries, and 3D profilometry of these surfaces plays a pivotal role for quality control. This paper proposes a novel and flexible large-scale 3D scanning system assembled by combining a robot, a binocular structured light scanner and a laser tracker. The measurement principle and system construction of the integrated system are introduced. A mathematical model is established for the global data fusion. Subsequently, a robust method is introduced for the establishment of the end coordinate system. As for hand-eye calibration, the calibration ball is observed by the scanner and the laser tracker simultaneously. With this data, the hand-eye relationship is solved, and then an algorithm is built to get the transformation matrix between the end coordinate system and the world coordinate system. A validation experiment is designed to verify the proposed algorithms. Firstly, a hand-eye calibration experiment is implemented and the computation of the transformation matrix is done. Then a car body rear is measured 22 times in order to verify the global data fusion algorithm. The 3D shape of the rear is reconstructed successfully. To evaluate the precision of the proposed method, a metric tool is built and the results are presented.

15.
Waste Manag ; 65: 147-152, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28404509

RESUMO

The wide applications of metal Cu inevitably resulted in a large quantity of waste Cu materials. In order to recover the useful Cu under the mild conditions and reduce the environmental emission, waste Cu scraps were recycled in the form of CuCl powders with high economic value added (EVA) via the facile hydrothermal route. The recycled CuCl powders were characterized in terms of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results suggested that the recycled CuCl powders consisted of many regular tetrahedron-like micro-particles. Furthermore, in order to reduce the cost of lithium ion battery (LIB) anode and build the connection of waste Cu scraps and LIB, the recycled CuCl powders were evaluated as the anode active material of LIB. As expected, the reversible discharge capacity was about 171.8mAh/g at 2.0C even after 50 cycles, implying the satisfactory cycle stability. Clearly, the satisfactory results may open a new avenue to develop the circular economy and the sustainable energy industry, which would be very important in terms of both the resource recovery and the environmental protection.


Assuntos
Fontes de Energia Elétrica , Lítio , Reciclagem , Eletrodos , Resíduo Eletrônico , Difração de Raios X
16.
Sensors (Basel) ; 17(1)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28098844

RESUMO

A laser stripe sensor has limited application when a point cloud of geometric samples on the surface of the object needs to be collected, so a galvanometric laser scanner is designed by using a one-mirror galvanometer element as its mechanical device to drive the laser stripe to sweep along the object. A novel mathematical model is derived for the proposed galvanometer laser scanner without any position assumptions and then a model-driven calibration procedure is proposed. Compared with available model-driven approaches, the influence of machining and assembly errors is considered in the proposed model. Meanwhile, a plane-constraint-based approach is proposed to extract a large number of calibration points effectively and accurately to calibrate the galvanometric laser scanner. Repeatability and accuracy of the galvanometric laser scanner are evaluated on the automobile production line to verify the efficiency and accuracy of the proposed calibration method. Experimental results show that the proposed calibration approach yields similar measurement performance compared with a look-up table calibration method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...