Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 11: 702082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589423

RESUMO

Breast cancer (BC) is one of the commonly occurring malignancies in females worldwide. Despite significant advances in therapeutics, the mortality and morbidity of BC still lead to low survival and poor prognosis due to the drug resistance. There are certain chemotherapeutic, endocrine, and target medicines often used for BC patients, including anthracyclines, taxanes, docetaxel, cisplatin, and fluorouracil. The drug resistance mechanisms of these medicines are complicated and have not been fully elucidated. It was reported that non-coding RNAs (ncRNAs), such as micro RNAs (miRNA), long-chain non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) performed key roles in regulating tumor development and mediating therapy resistance. However, the mechanism of these ncRNAs in BC chemotherapeutic, endocrine, and targeted drug resistance was different. This review aims to reveal the mechanism and potential functions of ncRNAs in BC drug resistance and to highlight the ncRNAs as a novel target for achieving improved treatment outcomes for BC patients.

2.
Am J Cancer Res ; 11(6): 2696-2716, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249423

RESUMO

Previous research indicated that mortalin overexpressed in breast cancer and contributed to carcinogenesis. Mortalin was also demonstrated to promote Epithelial-mesenchymal transition (EMT) and was considered as a factor for maintaining the stemness of the cancer stem cells. However, the underlying mechanisms about mortalin maintaining the stemness of breast cancer stem cells (BCSCs) remain unclear. Here, we identified that increased expression of mortalin in breast cancer was associated with poorer overall survival rate. Mortalin was elevated in breast cancer cell lines and BCSC-enriched populations. Additionally, knockdown of mortalin significantly inhibited the cell proliferation, migration and EMT, as well as sphere forming capacity and stemness genes expression. Further study revealed that mortalin promoted EMT and maintained BCSCs stemness via activating the Wnt/GSK3ß/ß-catenin signaling pathway in vivo and in vitro. Taken together, these findings unveiled the mechanism of mortalin in maintaining and regulating the stemness of BCSCs, and may offer novel therapeutic strategies for breast cancer treatment.

3.
Nat Commun ; 12(1): 3007, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021140

RESUMO

Small heat shock proteins (sHsps) bind unfolding proteins, thereby playing a pivotal role in the maintenance of proteostasis in virtually all living organisms. Structural elucidation of sHsp-substrate complexes has been hampered by the transient and heterogeneous nature of their interactions, and the precise mechanisms underlying substrate recognition, promiscuity, and chaperone activity of sHsps remain unclear. Here we show the formation of a stable complex between Arabidopsis thaliana plastid sHsp, Hsp21, and its natural substrate 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) under heat stress, and report cryo-electron microscopy structures of Hsp21, DXPS and Hsp21-DXPS complex at near-atomic resolution. Monomeric Hsp21 binds across the dimer interface of DXPS and engages in multivalent interactions by recognizing highly dynamic structural elements in DXPS. Hsp21 partly unfolds its central α-crystallin domain to facilitate binding of DXPS, which preserves a native-like structure. This mode of interaction suggests a mechanism of sHsps anti-aggregation activity towards a broad range of substrates.


Assuntos
Arabidopsis/metabolismo , Proteínas de Choque Térmico Pequenas/química , Proteínas de Choque Térmico Pequenas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Microscopia Crioeletrônica , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Resposta ao Choque Térmico , Modelos Moleculares , Dobramento de Proteína , Transferases/química , Transferases/metabolismo
4.
Autophagy ; 16(3): 575-583, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31276439

RESUMO

Macroautophagy/autophagy is an essential process for the maintenance of cellular homeostasis by recycling macromolecules under normal and stress conditions. ATG9 (autophagy related 9) is the only integral membrane protein in the autophagy core machinery and has a central role in mediating autophagosome formation. In cells, ATG9 exists on mobile vesicles that traffic to the growing phagophore, providing an essential membrane source for the formation of autophagosomes. Here we report the three-dimensional structure of ATG9 from Arabidopsis thaliana at 7.8 Å resolution, determined by single particle cryo-electron microscopy. ATG9 organizes into a homotrimer, with each protomer contributing at least six transmembrane α-helices. At the center of the trimer, the protomers interact via their membrane-embedded and C-terminal cytoplasmic regions. Combined with prediction of protein contacts using sequence co-evolutionary information, the structure provides molecular insights into the ATG9 architecture and testable hypotheses for the molecular mechanism of autophagy progression regulated by ATG9.Abbreviations: 2D: 2-dimensional; 3D: 3-dimensional; AtATG9: Arabidopsis ATG9; Atg: autophagy-related; ATG9: autophagy-related protein 9; cryo-EM: cryo-electron microscopy; DDM: dodecyl maltoside; GraDeR: gradient-based detergent removal; LMNG: lauryl maltose-neopentyl glycol; PAS: phagophore assembly site; PtdIns3K: phosphatidylinositol 3-kinase.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas Relacionadas à Autofagia/metabolismo , Microscopia Crioeletrônica , Proteínas de Membrana/metabolismo , Nanotecnologia , Proteínas de Arabidopsis/ultraestrutura , Proteínas Relacionadas à Autofagia/ultraestrutura , Proteínas de Membrana/ultraestrutura , Modelos Moleculares , Multimerização Proteica , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
5.
J Biotechnol ; 251: 99-105, 2017 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-28450258

RESUMO

The effects of two wastewater treatment processes (sequencing batch reactor, SBR; and anaerobic-anoxic-oxic, A2O) on sludge reduction with metabolic uncoupler 2,4-dichlorophenol (DCP) were studied in laboratory. The experimental results showed that the reduction of cumulative excess sludge in SBR and A2O was 43.7% and 44.2%, respectively, during the stable stage of the test. The two processes had similar average sludge yield and sludge yield reduction, i.e., 0.306 and 0.305mg of SS/mg chemical oxygen demand (COD), and 16.9% and 17.8%, respectively. The effect of DCP on the wastewater treatment efficiencies (namely, removal of COD, total nitrogen, NH4+-N, and total phosphorus) of the two processes were also similar. SBR was more likely to slightly retard the increase of activated sludge SVI with lesser increase in extracellular polymeric substances and protein/polysaccharide ratio. Although DCP did not dramatically affect the microbial communities of sludge, SBR was more favorable for increasing the activated sludge SOUR and maintaining the primary microorganisms of sludge than A2O.


Assuntos
Reatores Biológicos , Clorofenóis , Esgotos , Eliminação de Resíduos Líquidos/métodos , Compostos de Amônio/metabolismo , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Oxigênio/metabolismo , Fósforo/metabolismo , Esgotos/microbiologia , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...