Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(1): pgae006, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269070

RESUMO

A number of intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms, such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic-abundant heat-soluble proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. In this study, we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 shows enhanced tolerance to hyperosmotic stress under nonfermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represent a general biophysical solution for stress tolerance across the domains of life.

2.
Nat Commun ; 13(1): 6381, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289199

RESUMO

In response to improper kinetochore-microtubule attachments in mitosis, the spindle assembly checkpoint (SAC) assembles the mitotic checkpoint complex (MCC) to inhibit the anaphase-promoting complex/cyclosome, thereby delaying entry into anaphase. The MCC comprises Mad2:Cdc20:BubR1:Bub3. Its assembly is catalysed by unattached kinetochores on a Mad1:Mad2 platform. Mad1-bound closed-Mad2 (C-Mad2) recruits open-Mad2 (O-Mad2) through self-dimerization. This interaction, combined with Mps1 kinase-mediated phosphorylation of Bub1 and Mad1, accelerates MCC assembly, in a process that requires O-Mad2 to C-Mad2 conversion and concomitant binding of Cdc20. How Mad1 phosphorylation catalyses MCC assembly is poorly understood. Here, we characterized Mps1 phosphorylation of Mad1 and obtained structural insights into a phosphorylation-specific Mad1:Cdc20 interaction. This interaction, together with the Mps1-phosphorylation dependent association of Bub1 and Mad1, generates a tripartite assembly of Bub1 and Cdc20 onto the C-terminal domain of Mad1 (Mad1CTD). We additionally identify flexibility of Mad1:Mad2 that suggests how the Cdc20:Mad1CTD interaction brings the Mad2-interacting motif (MIM) of Cdc20 near O-Mad2. Thus, Mps1-dependent formation of the MCC-assembly scaffold functions to position and orient Cdc20 MIM near O-Mad2, thereby catalysing formation of C-Mad2:Cdc20.


Assuntos
Proteínas de Ciclo Celular , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Mitose , Catálise , Proteínas Mad2/metabolismo , Fuso Acromático/metabolismo , Proteínas Cdc20/metabolismo
3.
Nat Microbiol ; 7(10): 1686-1701, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36123441

RESUMO

During bacterial cell division, filaments of tubulin-like FtsZ form the Z-ring, which is the cytoplasmic scaffold for divisome assembly. In Escherichia coli, the actin homologue FtsA anchors the Z-ring to the membrane and recruits divisome components, including bitopic FtsN. FtsN regulates the periplasmic peptidoglycan synthase FtsWI. To characterize how FtsA regulates FtsN, we applied electron microscopy to show that E. coli FtsA forms antiparallel double filaments on lipid monolayers when bound to the cytoplasmic tail of FtsN. Using X-ray crystallography, we demonstrate that Vibrio maritimus FtsA crystallizes as an equivalent double filament. We identified an FtsA-FtsN interaction site in the IA-IC interdomain cleft of FtsA using X-ray crystallography and confirmed that FtsA forms double filaments in vivo by site-specific cysteine cross-linking. FtsA-FtsN double filaments reconstituted in or on liposomes prefer negative Gaussian curvature, like those of MreB, the actin-like protein of the elongasome. We propose that curved antiparallel FtsA double filaments together with treadmilling FtsZ filaments organize septal peptidoglycan synthesis in the division plane.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Actinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipídeos , Lipossomos , Proteínas de Membrana/metabolismo , Peptidoglicano/metabolismo , Tubulina (Proteína)/metabolismo
4.
Genes Dev ; 35(21-22): 1510-1526, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34593603

RESUMO

Cleavage and polyadenylation factor (CPF/CPSF) is a multiprotein complex essential for mRNA 3' end processing in eukaryotes. It contains an endonuclease that cleaves pre-mRNAs, and a polymerase that adds a poly(A) tail onto the cleaved 3' end. Several CPF subunits, including Fip1, contain intrinsically disordered regions (IDRs). IDRs within multiprotein complexes can be flexible, or can become ordered upon interaction with binding partners. Here, we show that yeast Fip1 anchors the poly(A) polymerase Pap1 onto CPF via an interaction with zinc finger 4 of another CPF subunit, Yth1. We also reconstitute a fully recombinant 850-kDa CPF. By incorporating selectively labeled Fip1 into recombinant CPF, we could study the dynamics of Fip1 within the megadalton complex using nuclear magnetic resonance (NMR) spectroscopy. This reveals that a Fip1 IDR that connects the Yth1- and Pap1-binding sites remains highly dynamic within CPF. Together, our data suggest that Fip1 dynamics within the 3' end processing machinery are required to coordinate cleavage and polyadenylation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Poliadenilação , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
5.
EMBO Rep ; 22(7): e52242, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34013668

RESUMO

During metaphase, in response to improper kinetochore-microtubule attachments, the spindle assembly checkpoint (SAC) activates the mitotic checkpoint complex (MCC), an inhibitor of the anaphase-promoting complex/cyclosome (APC/C). This process is orchestrated by the kinase Mps1, which initiates the assembly of the MCC onto kinetochores through a sequential phosphorylation-dependent signalling cascade. The Mad1-Mad2 complex, which is required to catalyse MCC formation, is targeted to kinetochores through a direct interaction with the phosphorylated conserved domain 1 (CD1) of Bub1. Here, we present the crystal structure of the C-terminal domain of Mad1 (Mad1CTD ) bound to two phosphorylated Bub1CD1 peptides at 1.75 Å resolution. This interaction is mediated by phosphorylated Bub1 Thr461, which not only directly interacts with Arg617 of the Mad1 RLK (Arg-Leu-Lys) motif, but also directly acts as an N-terminal cap to the CD1 α-helix dipole. Surprisingly, only one Bub1CD1 peptide binds to the Mad1 homodimer in solution. We suggest that this stoichiometry is due to inherent asymmetry in the coiled-coil of Mad1CTD and has implications for how the Mad1-Bub1 complex at kinetochores promotes efficient MCC assembly.


Assuntos
Proteínas de Ciclo Celular , Cinetocoros , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Cinetocoros/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Fosforilação , Transdução de Sinais , Fuso Acromático/metabolismo
6.
Mol Cell Biol ; 30(15): 3894-901, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20516216

RESUMO

Cyclin-dependent kinase-associated protein 1 (Cks1) is involved in the control of the transcription of a subset of genes in addition to its role in controlling the cell cycle in the budding yeast Saccharomyces cerevisiae. By directly ligating Cks1 onto a GAL1 promoter-driven reporter, we demonstrated that Cks1 acts as a transcription activator. Using this method, we dissected the downstream events from Cks1 recruitment at the promoter. We showed that subsequent to promoter binding, Cdc28 binding is required to modulate the level of gene expression. The ubiquitin-binding domain of Cks1 is essential for implementing downstream transcription events, which appears to recruit the proteasome via ubiquitylated proteasome subunits. We propose that the selective ability of Cks1 to bind ubiquitin allows this small molecule the flexibility to bind large protein complexes with specificity and that this may represent a novel mechanism of regulating transcriptional activation.


Assuntos
Proteína Quinase CDC2/metabolismo , Ubiquitina/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ciclo Celular/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Ativação Transcricional , Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...