Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Hear Res ; 450: 109048, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38852535

RESUMO

The Blood-Labyrinth Barrier (BLB) is pivotal for the maintenance of lymphatic homeostasis within the inner ear, yet the intricacies of its development and function are inadequately understood. The present investigation delves into the contribution of the Mfsd2a molecule, integral to the structural and functional integrity of the Blood-Brain Barrier (BBB), to the ontogeny and sustenance of the BLB. Our empirical findings delineate that the maturation of the BLB in murine models is not realized until approximately two weeks post-birth, with preceding stages characterized by notable permeability. Transcriptomic analysis elucidates a marked augmentation in Mfsd2a expression within the lateral wall of the cochlea in specimens exhibiting an intact BLB. Moreover, both in vitro and in vivo assays substantiate that a diminution in Mfsd2a expression detrimentally impacts BLB permeability and structural integrity, principally via the attenuation of tight junction protein expression and the enhancement of endothelial cell transcytosis. These insights underscore the indispensable role of Mfsd2a in ensuring BLB integrity and propose it as a viable target for therapeutic interventions aimed at the amelioration of hearing loss.

2.
Adv Sci (Weinh) ; : e2400251, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867396

RESUMO

Photosynthesis, essential for life on earth, sustains diverse processes by providing nutrition in plants and microorganisms. Especially, photosynthesis is increasingly applied in disease treatments, but its efficacy is substantially limited by the well-known low penetration depth of external light. Here, ultrasound-mediated photosynthesis is reported for enhanced sonodynamic tumor therapy using organic sonoafterglow (ultrasound-induced afterglow) nanoparticles combined with cyanobacteria, demonstrating the proof-of-concept sonosynthesis (sonoafterglow-induced photosynthesis) in cancer therapy. Chlorin e6, a typical small-molecule chlorine, is formulated into nanoparticles to stimulate cyanobacteria for sonosynthesis, which serves three roles, i.e., overcoming the tissue-penetration limitations of external light sources, reducing hypoxia, and acting as a sonosensitizer for in vivo tumor suppression. Furthermore, sonosynthetic oxygenation suppresses the expression of hypoxia-inducible factor 1α, leading to reduced stability of downstream SLC7A11 mRNA, which results in glutathione depletion and inactivation of glutathione peroxidase 4, thereby inducing ferroptosis of cancer cells. This study not only broadens the scope of microbial nanomedicine but also offers a distinct direction for sonosynthesis.

3.
J Adv Nurs ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808517

RESUMO

AIMS: The aim of the study is to develop a model using a machine learning approach that can effectively identify the quality of home care in communities. DESIGN: A cross-sectional design. METHODS: In this study, we evaluated the quality of home care in 170 community health service centres between October 2022 and February 2023. The Home Care Service Quality Questionnaire was used to collect information on home care structure, process and outcome quality. Then, an intelligent and comprehensive evaluation model was developed using a convolutional neural network, and its performance was compared with random forest and logistic regression models through various performance indicators. RESULTS: The convolutional neural network model was built upon seven variables, which encompassed the qualification of home nursing staff, developing and practicing emergency plan to cope with different emergency rescues in home environment, being equipped with medication and supplies for first aid according to specific situations, assessing nutrition condition of home patients, allocation of the number of home nursing staff, cases of new pressure ulcers and patient satisfaction rate. Remarkably, the convolutional neural network model demonstrated superior performance, outperforming both the random forest and regression models. CONCLUSION: The successful development and application of the convolutional neural network model highlight its ability to leverage data from community health service centres for rapid and accurate grading of home care quality. This research points the way to home care quality improvement. IMPACT: The model proposed in this study, coupled with the aforementioned factors, is expected to enhance the accuracy and efficiency of a comprehensive evaluation of home care quality. It will also help managers to take purposeful measures to improve the quality of home care. REPORTING METHOD: The reporting of this study (Observational, cross-sectional study) conforms to the STROBE statement. PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution. IMPLICATIONS FOR THE PROFESSION AND/OR PATIENT CARE: The application of this model has the potential to contribute to the advancement of high-quality home care, particularly in lower-middle-income communities.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38625559

RESUMO

PURPOSE: To evaluate literature evidences about the efficacy and safety of anti-angiogenesis agents plus chemoradiotherapy versus chemoradiotherapy in the treatment of locally advanced nasopharyngeal carcinoma. METHODS: The relevant literature was systematically searched from the date of establishment to April 2023 in PubMed, Embase, Web of Science, The Cochrane Library, Chinese National Knowledge Infrastructure, Chinese Biological Medicine, Wanfang and VIP database. Search terms included: Nasopharyngeal Neoplasms, Angiogenesis inhibitors, Endostar, Anlotinib, Apatinib, Bevacizumab, Sunitinib, Pazopanib, Chemoradiotherapy. The literature was strictly screened according to the inclusion and exclusion criteria, and 8 eligible studies were finally included in our meta-analysis (4 randomized controlled trials and 4 retrospective studies). RESULTS: A total of 642 patients were included, with 316 in the anti-angiogenesis agents plus chemoradiotherapy group and 326 in the chemoradiotherapy group. The results of our meta-analysis showed that compared with chemoradiotherapy group, the complete response rate (RR = 1.35, 95% CI 1.05-1.74, P = 0.02), objective response rate (RR = 1.26, 95% CI 1.12-1.43, P = 0.0002) in the anti-angiogenesis agents plus chemoradiotherapy group were significantly improved. In terms of safety, there was a higher incidence of cardiac arrhythmia (RR = 3.63, 95% CI 1.16-11.37, P = 0.03) and hypertension (RR = 1.85, 95% CI 1.04-3.27, P = 0.004) in the anti-angiogenesis agents plus chemoradiotherapy group, while no statistically significant differences were reported in other adverse reactions (all P > 0.05). CONCLUSION: Compared with chemoradiotherapy, anti-angiogenesis agents plus chemoradiotherapy could bring more benefits in terms of short-term efficacy, particularly by notably improving both complete response rate and objective response rate, and overall adverse reactions were acceptable. Anti-angiogenesis agents plus chemoradiotherapy may provide a promising direction for the treatment of locally advanced nasopharyngeal carcinoma. SYSTEMATIC REVIEW REGISTRATION: https://inplasy.com/inplasy-2023-8-0076/ , registration number INPLASY202380076.

5.
Small ; : e2310604, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329190

RESUMO

Nanoparticle-based drug delivery strategies have emerged as a crucial avenue for comprehensive sensorineural hearing loss treatment. Nevertheless, developing therapy vectors crossing both biological and cellular barriers has encountered significant challenges deriving from various external factors. Herein, the rational integration of gelatin nanoparticles (GNPs) with tetrahedral DNA nanostructures (TDNs) to engineer a distinct drug-delivery nanosystem (designed as TDN@GNP) efficiently enhances the biological permeability and cellular internalization, further resolving the dilemma of noise-induced hearing loss via loading epigallocatechin gallate (EGCG) with anti-lipid peroxidation property. Rationally engineering of TDN@GNP demonstrates dramatic alterations in the physicochemical key parameters of TDNs that are pivotal in cell-particle interactions and promote cellular uptake through multiple endocytic pathways. Furthermore, the EGCG-loaded nanosystem (TDN-EGCG@GNP) facilitates efficient inner ear drug delivery by superior permeability through the biological barrier (round window membrane), maintaining high drug concentration within the inner ear. The TDN-EGCG@GNP actively overcomes the cell membrane, exhibiting hearing protection from noise insults via reduced lipid peroxidation in outer hair cells and spiral ganglion neurons. This work exemplifies how integrating diverse vector functionalities can overcome biological and cellular barriers in the inner ear, offering promising applications for inner ear disorders.

6.
Innovation (Camb) ; 5(2): 100577, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38379786

RESUMO

Heat is almost everywhere. Unlike electricity, which can be easily manipulated, the current ability to control heat is still highly limited owing to spontaneous thermal dissipation imposed by the second law of thermodynamics. Optical illumination and pressure have been used to switch endothermic/exothermic responses of materials via phase transitions; however, these strategies are less cost-effective and unscalable. Here, we spectroscopically demonstrate the glassy crystal state of 2-amino-2-methyl-1,3-propanediol (AMP) to realize an affordable, easily manageable approach for thermal energy recycling. The supercooled state of AMP is so sensitive to pressure that even several megapascals can induce crystallization to the ordered crystal, resulting in a substantial temperature increase of 48 K within 20 s. Furthermore, we demonstrate a proof-of-concept device capable of programable heating with an extremely high work-to-heat conversion efficiency of ∼383. Such delicate and efficient tuning of heat may remarkably facilitate rational utilization of waste heat.

7.
Phytomedicine ; 124: 155305, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176275

RESUMO

BACKGROUND: Hyperuricemia (HUA) is a metabolic disease characterized by a high level of uric acid (UA). The extensive historical application of traditional Chinese medicine (TCM) offers a range of herbs and prescriptions used for the treatment of HUA-related disorders. However, the core herbs in the prescriptions and their mechanisms have not been sufficiently explained. PURPOSE: Our current investigation aimed to estimate the anti-HUA effect and mechanisms of Paeonia veitchii Lynch, an herb with high use frequency identified from data mining of TCM prescriptions. METHODS: Prescriptions for HUA/gout treatment were statistically analyzed through a data mining approach to determine the common nature and use frequency of their composition herbs. The chemical constituents of Paeonia veitchii extract (PVE) were analyzed by UPLC-QTOF-MS/MS, while its UA-lowering effect was further evaluated in adenosine-induced liver cells and potassium oxonate (PO) and hypoxanthine (HX)-induced HUA mice. RESULTS: A total of 225 prescriptions involving 246 herbs were sorted out. The properties, flavors and meridians of the appearing herbs were mainly cold, bitter and liver, respectively, while their efficacy was primarily concentrated on clearing heat and dispelling wind. Further usage frequency analysis yielded the top 20 most commonly used herbs, in which PVE presented significant inhibitory activity (IC50 = 131.33 µg/ml) against xanthine oxidase (XOD), and its constituents showed strong binding with XOD in a molecular docking study and further were experimentally validated through XOD enzymatic inhibition and surface plasmon resonance (SPR). PVE (50 to 200 µg/ml) dose-dependently decreased UA levels by inhibiting XOD expression and activity in BRL 3A liver cells. In HUA mice, oral administration of PVE exhibited a significant UA-lowering effect, which was attributed to the reduction of UA production by inhibiting XOD activity and expression, as well as the enhancement of UA excretion by regulating renal urate transporters (URAT1, GLUT9, OAT1 and ABCG2). Noticeably, all doses of PVE treatment did not cause any liver injury, and displayed a renal protective effect. CONCLUSIONS: Our results first comprehensively clarified the therapeutic effect and mechanisms of PVE against HUA through suppressing UA production and promoting UA excretion with hepatic and renal protection, suggesting that PVE could be a promising UA-lowering candidate with a desirable safety profile for the treatment of HUA and prevention of gout.


Assuntos
Gota , Hiperuricemia , Paeonia , Camundongos , Animais , Hiperuricemia/induzido quimicamente , Ácido Úrico/metabolismo , Xantina Oxidase/metabolismo , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Rim
8.
Int J Biol Macromol ; 259(Pt 2): 129286, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216015

RESUMO

Xanthine oxidase (XO) is a crucial target for hyperuricemia treatment(s). Naturally occurred XO inhibitors with minimal toxicity and high efficacy have attracted researchers' attention. With the goal of quickly identifying natural XO inhibitors, an integrated computational screening strategy was constructed by molecular docking and calculating the free energy of binding. Twenty-seven hits were achieved from a database containing 19,377 natural molecules. This includes fourteen known XO inhibitors and four firstly-reported inhibitors (isolicoflavonol, 5,7-dihydroxycoumarin, parvifolol D and clauszoline M, IC50 < 40 µM). Iolicoflavonol (hit 8, IC50 = 8.45 ± 0.68 µM) and 5,7-dihydroxycoumarin (hit 25, IC50 = 10.91 ± 0.71 µM) displayed the great potency as mixed-type inhibitors. Docking study and molecular dynamics simulation revealed that both hits could interact with XO's primarily active site residues ARG880, MOS1328, and ASN768 of XO. Fluorescence spectroscopy studies showed that hit 8 bound to the active cavity region of XO, causing changes in XO's conformation and hydrophobicity. Hits 8 and 25 exhibit favorable Absorption, Distribution, Metabolism, and Excretion (ADME) properties. Additionally, no cytotoxicity against human liver cells was observed at their median inhibition concentrations against XO. Therefore, the present study offers isolicoflavonol and 5,7-dihydroxycoumarin with the potential to be disease-modifying agents for hyperuricemia.


Assuntos
Hiperuricemia , Xantina Oxidase , Humanos , Simulação de Acoplamento Molecular , Hiperuricemia/tratamento farmacológico , Inibidores Enzimáticos/química , Domínio Catalítico , Relação Estrutura-Atividade
9.
Bioeng Transl Med ; 9(1): e10596, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193122

RESUMO

The therapeutic effects of pharmaceuticals depend on their drug concentrations in the cochlea. Efficient drug delivery from the systemic circulation into the inner ear is limited by the blood-labyrinth-barrier (BLB). This study investigated a novel noninvasive sound conditioning (SC) strategy (90 dB SPL, 8-16 kHz, 2 h sound exposure) to temporally enhance BLB permeability in a controllable way, contributing to maximizing the penetration of pharmaceuticals from blood circulation into the cochlea. Trafficking of Fluorescein Isothiocyanate conjugated dextran and bovine serum albumin (FITC-dextran and FITC-BSA) demonstrated that paracellular leakage of BLB sustained for 6 h after SC, providing a controllable time window for systemic administration. Cochlear concentrations of dexamethasone (DEX) and dexamethasone phosphate (DEX-P), respectively transported by transcellular and paracellular pathways, showed a higher content of the latter one after SC, further confirming the key role of paracellular pathway in the SC-induced hyperpermeability. Results of high-throughput RNA-sequencing identified a series of tight junction (TJ)-associated genes after SC. The expressions of TJ (ZO-1) were reduced and irregular rearrangements of the junction were observed by transmission electron microscopy after SC. We further determined the inhibiting role of Rab13 in the recruitment of ZO-1 and later in the regulation of cellular permeability. Meanwhile, no significant change in the quantifications of endothelial caveolae vesicles after SC indicated that cellular transcytosis accounted little for the temporary hyperpermeability after SC. Based on these results, SC enhances the BLB permeability within 6 h and allows systemically applied drugs which tend to be transported by paracellular pathway to readily enter the inner ear, contributing to guiding the clinical medications on hearing loss.

10.
Biosens Bioelectron ; 246: 115880, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38064996

RESUMO

Despite the widespread use of nanozyme-based colorimetric assays in biosensing, challenges such as limited catalytic efficiency, inadequate sensitivity to analytes, and insufficient understanding of the structure-activity relationship still persist. Overcoming these hurdles by enhancing the inherent enzyme-like performance of nanozymes using the unique attributes of nanomaterials is still a significant obstacle. Here, we designed and constructed Pd-Cu2O nanocages (Pd-Cu2O NCs) by selectively etching the vertices of the copper octahedra to enhance the peroxidase-like (POD-like) activity of Cu2O nanoparticles. The improved catalytic activity of Pd-Cu2O NCs was attributed to their high specific surface area and abundant catalytic sites. Mechanistic studies revealed that reactive oxygen species (ROS) intermediates (•OH) were generated through the decomposition of H2O2, resulting in POD-like activity of the Pd-Cu2O NCs. The designed Pd-Cu2O NCs can oxidize 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, producing a blue oxidation product (oxTMB). The oxidation reaction was inhibited and led to a significant bleaching of the blue color in the presence of reducing substances isoniazid (INH) and ascorbic acid (AA). Based on these principles, we developed a colorimetric sensing platform for the detection of INH and AA, exhibiting good sensitivity and stability. This work provided a straightforward approach to the structural engineering of nanomaterials and the enhancement of enzyme-mimicking properties.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Ácido Ascórbico , Cobre/química , Isoniazida , Colorimetria/métodos , Peróxido de Hidrogênio/química , Domínio Catalítico , Técnicas Biossensoriais/métodos , Nanopartículas/química , Peroxidase/química , Peroxidases
11.
Int J Biol Macromol ; 253(Pt 4): 126955, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37739295

RESUMO

Apolipoprotein A4 (Apo-A4) is considered as a prospective molecular biomarker for diagnosis of depression due to its neurosynaptic toxicity. Here, we propose a neighboring hybridization induced catalyzed hairpin assembly (CHA) driven bipedal DNA walker that mediates hybridization of Ag nanoparticles (Ag NPs) with DNA probes for highly sensitive electrochemical quantitative detection of Apo-A4. Driven by CHA, this bipedal DNA walker can spread all over the surface of the sensor, induce the HP1-HP2 double chain structure, make the surface of the sensor negatively charged, and adsorb a large number of Ag ions. After chemical reduction with hydroquinone, the Ag NPs formed provide signal tracers for electrochemical dissolution analysis of the target. The Ag NPs formed by chemical reduction of hydroquinone can provide signal traces for electrochemical stripping analysis of target thrombin. The linear range of this method is from 10 pg mL-1 to 1000 ng mL-1, and the detection limit is 5.1 pg mL-1. This enzyme-free and labeling detection method provides a new strategy for rapid clinical detection of Apo-A4 and accurate identification of depression.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Hidroquinonas , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Prata/química , DNA/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Ouro/química
12.
Theranostics ; 13(11): 3524-3549, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441605

RESUMO

Noise accounts for one-third of hearing loss worldwide. Regretfully, noise-induced hearing loss (NIHL) is deemed to be irreversible due to the elusive pathogenic mechanisms that have not been fully elucidated. The complex interaction between genetic and environmental factors, which influences numerous downstream molecular and cellular events, contributes to the NIHL. In clinical settings, there are no effective therapeutic drugs other than steroids, which are the only treatment option for patients with NIHL. Therefore, the need for treatment of NIHL that is currently unmet, along with recent progress in our understanding of the underlying regulatory mechanisms, has led to a lot of new literatures focusing on this therapeutic field. The emergence of novel technologies that modify local drug delivery to the inner ear has led to the development of promising therapeutic approaches, which are currently under clinical investigation. In this comprehensive review, we focus on outlining and analyzing the basics and potential therapeutics of NIHL, as well as the application of biomaterials and nanomedicines in inner ear drug delivery. The objective of this review is to provide an incentive for NIHL's fundamental research and future clinical translation.


Assuntos
Orelha Interna , Perda Auditiva Provocada por Ruído , Humanos , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/genética , Sistemas de Liberação de Medicamentos
13.
Chem Sci ; 14(15): 3990-4001, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37063800

RESUMO

Single-molecule magnets are promising candidates for data storage and quantum computing applications. A major barrier to their use is rapid magnetic relaxation and quantum decoherence due to thermal vibrations. Here we report a reanalysis of inelastic neutron scattering (INS) data of the candidate qubit Na9[Ho(W5O18)2]·35D2O, wherein we demonstrate for the first time that magnetic relaxation times and mechanisms can be directly observed as crystal field (CF) peak broadening in INS spectra of a lanthanoid molecular system. The magnetoelastic coupling between the lower energy CF states and phonons (lattice vibrations) is determined by the simultaneous measurement of CF excitations and the phonon density of states, encoded within the same INS experiment. This directly results in the determination of relaxation coupling pathways that occur in this molecule. Such information is invaluable for the further advancement of SMMs and to date has only been obtained from techniques performed in external magnetic fields. Additionally, we determine a relaxation rate of quantum-tunnelling of magnetisation that is consistent with previously measured EPR spectroscopy data.

14.
Small ; 19(32): e2300976, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37066742

RESUMO

Piezoelectric material-mediated sonodynamic therapy (SDT) has received considerable research interest in cancer therapy. However, the simple applications of conventional piezoelectric materials do not realize the full potential of piezoelectric materials in medicine. Therefore, the energy band structure of a piezoelectric material is modulated in this study to meet the actual requirement for cancer treatment. Herein, an elaborate PEGylated piezoelectric solid solution 0.7BiFeO3 -0.3BaTiO3 nanoparticles (P-BF-BT NPs) is synthesized, and the resultant particles achieve excellent piezoelectric properties and their band structure is tuned via band engineering. The tuned band structure of P-BF-BT NPs is energetically favorable for the synchronous production of superoxide radicals (•O2 - ) and oxygen (O2 ) self-supply via water splitting by the piezoelectric effect. Besides, the P-BF-BT NPs can initiate the Fenton reaction to generate hydroxyl radical (•OH), and thus, chemodynamic therapy (CDT) can be augmented by ultrasound. Detailed in vitro and in vivo research has verified the promising effects of multimodal imaging-guided P-BF-BT NP-mediated synergistic SDT/CDT by the piezo-Fenton process in hypoxic tumor elimination, accompanied by high therapeutic biosafety. The current demonstrates a novel strategy for designing and synthesizing "custom-made" piezoelectric materials for cancer therapy in the future.


Assuntos
Nanopartículas , Neoplasias , Humanos , Engenharia , Radical Hidroxila , Hipóxia , Oxigênio , Linhagem Celular Tumoral , Neoplasias/terapia , Peróxido de Hidrogênio
15.
Nat Commun ; 14(1): 2410, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105970

RESUMO

Thermoelectric materials can realize direct conversion between heat and electricity, showing excellent potential for waste heat recovery. Cu2Se is a typical superionic conductor thermoelectric material having extraordinary ZT values, but its superionic feature causes poor service stability and low mobility. Here, we reported a fast preparation method of self-propagating high-temperature synthesis to realize in situ compositing of BiCuSeO and Cu2Se to optimize the service stability. Additionally, using the interface design by introducing graphene in these composites, the carrier mobility could be obviously enhanced, and the strong phonon scatterings could lead to lower lattice thermal conductivity. Ultimately, the Cu2Se-BiCuSeO-graphene composites presented excellent thermoelectric properties with a ZTmax value of ~2.82 at 1000 K and a ZTave value of ~1.73 from 473 K to 1000 K. This work provides a facile and effective strategy to largely improve the performance of Cu2Se-based thermoelectric materials, which could be further adopted in other thermoelectric systems.

16.
Int J Nanomedicine ; 18: 2053-2068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101838

RESUMO

Background and Purpose: Luteolin (LUT), a flavonoid found in various plants, has been reported to have potential therapeutic effects in melanoma. However, poor water solubility and low bioactivity have severely restricted the clinical application of LUT. Based on the high reactive oxygen species (ROS) levels in melanoma cells, we developed nanoparticles encapsulating LUT with the ROS-responsive material poly(propylene sulfide)-poly(ethylene glycol) (PPS-PEG) to enhance the water solubility of LUT, accelerate the release of LUT in melanoma cells, and further enhance its anti-melanoma effect, providing a viable solution for the application of LUT nano-delivery systems in melanoma therapy. Methods: In this study, LUT-loaded nanoparticles were prepared with PPS-PEG and named as LUT-PPS-NPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were applied to determine the size and morphology of LUT-PPS-NPs. In vitro studies were carried out to determine the uptake and mechanism of LUT-PPS-NPs by SK-MEL-28 melanoma cells. According to the CCK-8 assay, the cytotoxic effects of LUT-PPS-NPs on human skin fibroblasts (HSF) and SK-MEL-28 cells were assessed. Apoptosis assays, cell migration and invasion assays, and proliferation inhibition assays with low and normal density plating were also applied to test the in vitro anti-melanoma effect. Additionally, melanoma models were established utilizing BALB/c nude mice and initially evaluated the growth inhibitory impact following intratumoral injection of LUT-PPS-NPs. Results: The size of LUT-PPS-NPs was 169.77 ± 7.33 nm with high drug loading (15.05 ± 0.07%). In vitro, cellular assays confirmed that LUT-PPS-NPs were efficiently internalized by SK-MEL-28 cells and showed low cytotoxicity against HSF. Moreover, LUT released from LUT-PPS-NPs significantly inhibited tumor cell proliferation, migration and invasion. Animal experiments showed that LUT-PPS-NPs inhibited tumor growth more than 2-fold compared with the LUT group. Conclusion: In conclusion, the LUT-PPS-NPs developed in our study enhanced the anti-melanoma effect of LUT.


Assuntos
Melanoma , Nanopartículas , Animais , Camundongos , Humanos , Luteolina/farmacologia , Luteolina/uso terapêutico , Camundongos Nus , Espécies Reativas de Oxigênio , Melanoma/tratamento farmacológico , Água , Linhagem Celular Tumoral
17.
Artigo em Inglês | MEDLINE | ID: mdl-37059008

RESUMO

Yuquan Pill (YQP) is a traditional Chinese medicine (TCM) for the treatment of type 2 diabetes (T2DM) in China for many years, and has a beneficial clinical effect. In this study, the antidiabetic mechanism of YQP was investigated for the first time from the perspective of metabolomics and intestinal microbiota. After 28 days of high-fat feeding, rats were injected intraperitoneally with streptozotocin (STZ, 35 mg/kg) followed by a single oral administration of YQP 2.16 g/kg and metformin 200 mg/kg for 5 weeks. The results showed that YQP was effectively improved insulin resistance and alleviated hyperglycemia and hyperlipidemia associated with T2DM. YQP was found to regulate metabolism and gut microbiota in T2DM rats using untargeted metabolomics and gut microbiota integration. Forty-one metabolites and five metabolic pathways were identified, including Ascorbate and aldarate metabolism, Nicotinate and nicotinamide metabolism, Galactose metabolism, Pentose phosphate pathway and Tyrosine metabolism. YQP can regulate T2DM-induced dysbacteriosis by modulating the abundance of Firmicutes, Bacteroidetes, Ruminococcus, Lactobacillus. The restorative effects of YQP in rats with T2DM have been confirmed and provide a scientific basis for the clinical treatment of diabetic patients.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Metformina , Ratos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Metabolômica
18.
Int J Biol Macromol ; 236: 124003, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907306

RESUMO

Insufficient hydrogen peroxide content in tumor cells, unsuitable pH and low efficiency of commonly used metal catalysts severely affect the efficiency of chemodynamic therapy, resulting in unsatisfactory efficacy of chemodynamic therapy alone. For this purpose, we designed a composite nanoplatform capable of targeting tumors and selectively degrading in the tumor microenvironment (TME) to address these issues. In this work, we synthesized Au@Co3O4 nanozyme inspired by crystal defect engineering. The addition of Au determines the formation of oxygen vacancies, accelerates electron transfer, and enhances redox activity, thus significantly enhancing the superoxide dismutase (SOD)-like and catalase (CAT)-like catalytic activities of the nanozyme. Subsequently, we camouflaged the nanozyme using a biomineralized CaCO3 shell to avoid damage to normal tissues by the nanozyme while effectively encapsulating the photosensitizer IR820, and finally the tumor targeting ability of the nanoplatform was enhanced by the modification of hyaluronic acid. Under near-infrared (NIR) light irradiation, the Au@Co3O4@CaCO3/IR820@HA nanoplatform not only visualizes the treatment with multimodal imaging, but also plays a photothermal sensitizing role through various strategies, while enhancing the enzyme catalytic activity, cobalt ion-mediated chemodynamic therapy (CDT) and IR820-mediated photodynamic therapy (PDT), and achieving the synergistic enhancement of reactive oxygen species (ROS) generation.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio , Oxigênio , Ácido Hialurônico , Biomineralização , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
19.
Sci Rep ; 13(1): 4877, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966194

RESUMO

Alzheimer's disease (AD) is the most common type of age-related dementia. Inhibition of butyrylcholinesterase (BChE) emerge as an effective therapeutic target for AD. A series of new substituted acetamide derivatives were designed, synthesized and evaluated for their ability to inhibit BChE. The bioassay results revealed that several compounds displayed attractive inhibition against BChE). Among them, compound 8c exhibited the highest BChE inhibition with IC50 values of 3.94 µM. Lineweaver Burk plot indicated that 8c acted as a mixed-type BChE inhibitor. In addition, docking studies confirmed the results obtained through in vitro experiments, and showed that 8c bound to the catalytic anionic site (CAS) and peripheral anionic site (PAS) of BChE active site. Meanwhile, its ADME parameters were approximated using in silico method. Molecular dynamics simulation studies on the complex of 8c-BChE were performed, RMSD, RMSF, Rg, SASA, and the number of hydrogen bonds were calculated as well. These results implied that 8c could serve as appropriate lead molecule for the development of BChE inhibitor.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/química , Doença de Alzheimer/tratamento farmacológico , Amidas/uso terapêutico , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Relação Estrutura-Atividade , Estrutura Molecular
20.
Int J Biol Macromol ; 236: 124020, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36921829

RESUMO

Increasing the formation of reactive oxygen species (ROS) and reducing the elimination of ROS are the two main objectives in the development of novel inorganic sonosensitizers for use in sonodynamic therapy (SDT). Therefore, BTO-Pd-MnO2-HA nanocomplexes with targeted tumor cells and degradable oxygen-producing shells were designed as piezoelectric sonosensitizers for enhancing SDT. The deposition of palladium particles (Pd NPs) leads to the formation of Schottky junctions, promoting the separation of electron-hole pairs and thereby increasing the efficiency of toxic ROS generation in SDT. The tumor microenvironment (TME) triggers the degradation of MnO2, and the released Mn2+ ions catalyze the generation of hydroxyl radicals (•OH) from H2O2 through a Fenton-like reaction. BTO-Pd-MnO2-HA can continuously consume glutathione (GSH) and generate O2, thereby improving the efficiency of SDT and chemodynamic therapy (CDT). A multistep enhanced SDT process mediated by the piezoelectric sonosensitizers BTO-Pd-MnO2-HA was designed, targeted by hyaluronic acid (HA), activated by decomposition in TME, and amplified by deposition of Pd. This procedure not only presents a new alternative for the improvement of sonosensitizers but also widens the application of piezoelectric nanomaterials in biomedicine.


Assuntos
Melanoma , Nanocompostos , Neoplasias , Humanos , Ácido Hialurônico , Peróxido de Hidrogênio , Compostos de Manganês/farmacologia , Espécies Reativas de Oxigênio , Microambiente Tumoral , Óxidos , Melanoma/tratamento farmacológico , Nanocompostos/uso terapêutico , Glutationa , Oxigênio , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...