Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065136

RESUMO

Fiber-delay measurement is one of the key fundamental technologies in numerous fields. Here, we propose and experimentally demonstrate a high-precision and concise optical time delay measurement system based on the technique of linear optical sampling, reaching the precision better than 100 fs under averaging. The use of only two optical frequency combs without locking the carrier-envelope-offset frequency greatly simplifies the structure of the time-delay measurement system. We also experimentally investigate the current limitations on the precision of the system. The timing jitter noises of two sources are mainly non-common mode and are both restricted to the frequency sources. Our results indicate that the proposed device can measure fiber length fluctuations below 10 µm, paving the way for further analyses of the external disturbances on the fiber link.

2.
Opt Express ; 31(24): 39681-39694, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041284

RESUMO

To meet the requirements of time-frequency networks and enable frequency downloadability for nodes along the link, we demonstrated the extraction of stable frequency signals at nodes using a mode-locked laser under the condition of 100 km laboratory fiber. The node consists of a simple structure that utilizes widely used optoelectronic devices and enables plug-and-play applications. In addition, the node can recover frequency signals with multiple frequencies, which are useful for scenarios that require different frequencies. Here, we experimentally demonstrated a short-term frequency instability of 2.83 × 10-13@1 s and a long-term frequency instability of 1.18 × 10-15@10,000 s at the node, which is similar to that at the remote site of the frequency transfer system. At the same time, frequency signals with different frequencies also achieved stable extraction with the same performance at the node. Our results can support the distributed application under large-scale time-frequency networks.

3.
Sci Total Environ ; 857(Pt 1): 159319, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36216046

RESUMO

With the exposure of excessive intensive use of urban and agricultural space, the optimization of intensive use of ecological space provides a new way to coordinate the global problem of spatial conflict between ecological protection and economic development. However, the coupling accuracy of the existing structure-spatial coupling optimization model is low, which cannot provide method support for the optimization of intensive use of ecological space. To solve this problem, we propose a new model of ecological spatial intensive use optimization (ESIUO) based on the non-stationarity of the Markov state transition probability of the dominant ecosystem service functions (DESFs) and their suitability, and with the help of the framework of cellular automata (CA). We took Qionglai City as an empirical study area, and compared the results of this model with those of CA-Markov and CLUE-S models with the same parameters. The results show that: (i) The quantitative structure corresponding to the spatial layout of each dominant ecosystem service function (DESF) optimized by the ESIUO model has the smallest relative error (δk≤0.04%) with the optimal quantitative structure. (ii) The layout of DESFs optimized by the ESIUO model maximizes the supply capacity of ecosystem services. The minimum matching degree between the distribution of each DESF and the high-value area of its suitability is 92.06 %, and the spatial distribution is more compact, and the comprehensive effect of spatial layout is the best. Further analysis confirmed that the model can establish the spatial layout of DESFs that can realize the high precision coupling with the optimal quantitative structure of DESFs in terms of quantitative structure, and can support the construction of the layout of intensive use of ecological space to alleviate the pressure of non-ecological space expansion in these areas, and then provide a new way to coordinate ecological protection and economic development.


Assuntos
Conservação dos Recursos Naturais , Desenvolvimento Econômico , Ecossistema , Autômato Celular , Cidades , China
4.
Nat Phys ; 17(12): 1396-1401, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966439

RESUMO

Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals propagating through the network consistent with domain walls. The analysis of these data from a continuous month-long operation of GNOME finds no statistically significant signals, thus placing experimental constraints on such dark matter scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...