Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Heliyon ; 10(7): e28218, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560106

RESUMO

Host-virus interactions can significantly impact the viral life cycle and pathogenesis; however, our understanding of the specific host factors involved in highly pathogenic avian influenza A virus H7N9 (HPAI H7N9) infection is currently restricted. Herein, we designed and synthesized 65 small interfering RNAs targeting host genes potentially associated with various aspects of RNA virus life cycles. Afterward, HPAI H7N9 viruses were isolated and RNA interference was used to screen for host factors likely to be involved in the life cycle of HPAI H7N9. Moreover, the research entailed assessing the associations between host proteins and HPAI H7N9 proteins. Twelve key host proteins were identified: Annexin A (ANXA)2, ANXA5, adaptor related protein complex 2 subunit sigma 1 (AP2S1), adaptor related protein complex 3 subunit sigma 1 (AP3S1), ATP synthase F1 subunit alpha (ATP5A1), COPI coat complex subunit alpha (COP)A, COPG1, heat shock protein family A (Hsp70) member 1A (HSPA)1A, HSPA8, heat shock protein 90 alpha family class A member 1 (HSP90AA1), RAB11B, and RAB18. Co-immunoprecipitation revealed intricate interactions between viral proteins (hemagglutinin, matrix 1 protein, neuraminidase, nucleoprotein, polymerase basic 1, and polymerase basic 2) and these host proteins, presumably playing a crucial role in modulating the life cycle of HPAI H7N9. Notably, ANXA5, AP2S1, AP3S1, ATP5A1, HSP90A1, and RAB18, were identified as novel interactors with HPAI H7N9 proteins rather than other influenza A viruses (IAVs). These findings underscore the significance of host-viral protein interactions in shaping the dynamics of HPAI H7N9 infection, while highlighting subtle variations compared with other IAVs. Deeper understanding of these interactions holds promise to advance disease treatment and prevention strategies.

2.
Nat Commun ; 15(1): 2444, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503738

RESUMO

There have been reports of long coronavirus disease (long COVID) and breakthrough infections (BTIs); however, the mechanisms and pathological features of long COVID after Omicron BTIs remain unclear. Assessing long-term effects of COVID-19 and immune recovery after Omicron BTIs is crucial for understanding the disease and managing new-generation vaccines. Here, we followed up mild BA.2 BTI convalescents for six-month with routine blood tests, proteomic analysis and single-cell RNA sequencing (scRNA-seq). We found that major organs exhibited ephemeral dysfunction and recovered to normal in approximately six-month after BA.2 BTI. We also observed durable and potent levels of neutralizing antibodies against major circulating sub-variants, indicating that hybrid humoral immunity stays active. However, platelets may take longer to recover based on proteomic analyses, which also shows coagulation disorder and an imbalance between anti-pathogen immunity and metabolism six-month after BA.2 BTI. The immunity-metabolism imbalance was then confirmed with retrospective analysis of abnormal levels of hormones, low blood glucose level and coagulation profile. The long-term malfunctional coagulation and imbalance in the material metabolism and immunity may contribute to the development of long COVID and act as useful indicator for assessing recovery and the long-term impacts after Omicron sub-variant BTIs.


Assuntos
Infecções Irruptivas , Síndrome de COVID-19 Pós-Aguda , Humanos , Estudos Prospectivos , Proteômica , Estudos Retrospectivos , Anticorpos Neutralizantes , Anticorpos Antivirais
4.
Pathogens ; 12(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37764902

RESUMO

Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is a rare and severe form of end-stage liver disease with high mortality; gut microbes are strongly associated with the development of this severe liver disease but the exact association is unclear. Artificial liver support systems (ALSS) are clinically important in prolonging the waiting time for liver transplantation and in aiding drug therapy to achieve remission. The aim of this study was to investigate the effect of ALSS on the abundance and diversity of microorganisms in the gut of HBV-ACLF patients. In this study, 109 stool samples were collected from patients with hepatitis B virus-associated acute chronic liver failure (HBV-ACLF) for 16S rRNA sequencing. Among them, 44 samples were from patients treated with ALSS therapy as an adjunct to standard medical treatment (SMT) and 65 were from patients receiving SMT only. Analysis of the sequencing results suggested that there were significant differences in the abundance and diversity of gut microbiota between the with-ALSS and without-ALSS groups (p < 0.05). The operational taxonomic units and Shannon indexes indicated that the diversity and abundance of the gut microbiome, while decreasing after the first ALSS treatment, gradually increased after an increase in the number of ALSS therapies. The overall proportion of HBV-ACLF patients with coinfection was 27.59%; the coinfection can reduce the abundance of the Bacteroidetes phylum in the microbiome significantly whereas Proteobacteria were highly enriched. After ALSS therapy, HBV-ACLF patients had a decrease in potentially harmful bacteria, an increase in potentially beneficial bacteria, an increase in the diversity of the intestinal microbiota, and the intestinal microecological disorders were corrected to a certain extent. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL) levels, as well as the international normalized ratio (INR), showed a decreasing trend whereas plasminogen activity (PTA) increased and the condition of patients with HBV-ACLF progressed in a favorable direction. In addition, the abundance of Blautia and Coprococcus was negatively correlated with TBIL and INR, positively correlated with PTA, and positively correlated with disease recovery. Our study shows that ALSS can alter the composition of the gut microbiota and have an ameliorating effect on the gut microecological imbalance in HBV-ACLF patients. It is worth mentioning that Blautia and Coprococcus may have great potential as biomarkers.

5.
Exp Ther Med ; 25(5): 232, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37114173

RESUMO

Aspirin decreases liver fibrosis index and inflammation levels. However, the exact mechanism underlying the effects of aspirin are yet to be elucidated. The aim of the study was to investigate the potential protective effects of aspirin on carbon tetrachloride (CCl4)-induced hepatic fibrosis in Sprague-Dawley rats. Rats were divided into four groups, including healthy and CCl4 control and low-(aspirin 10 mg/kg + CCl4) and high-dose aspirin group (aspirin 300 mg/kg + CCl4). After 8 weeks treatment, the histopathological examinations of hepatocyte fibrosis in liver and serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), IL-1ß, transforming growth factor-ß1 (TGF-ß1), hyaluronic acid (HA), laminin (LN) and type IV collagen (IV.C) were determined. Histopathological examination suggested that aspirin decreased CCl4-induced hepatic fibrosis and liver inflammation. The high-dose aspirin group significantly decreased the serum levels of ALT, AST, HA and LN compared with the CCl4 control group. High-dose aspirin group significantly decreased the levels of pro-inflammatory cytokines IL-1ß compared with CCl4 group. The high-dose aspirin group significantly inhibited the expression of TGFß-1 protein compared with CCl4 group. Overall, the present study indicated that aspirin exhibited potent protective effects against CCl4-induced hepatic fibrosis via inhibition of the TGFß-1 pathway and pro-inflammatory cytokine IL-1ß.

7.
Explore (NY) ; 19(4): 496-497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36335057

RESUMO

This study focused on how to deal with the psychological trauma from the perspective of a doctor on the front line of the fight against COVID-19. As the pandemic continues to ravage our world, post-pandemic psychological counseling urgently needs to be addressed. Based on the experience of fighting the epidemic, this study discusses the psychological changes since the COVID-19 outbreak in 2020. Taking a 19-year-old with breast cancer as an example, this study considered how to find spiritual comfort, and examined how to find meaning in today's complicated world and lives, as well as turning the crisis into an opportunity for spiritual renewal and adding meaning to our lives. It is hoped that this study will inspire readers to overcome the difficulties of the epidemic, find strength and see it as a life-changing opportunity.


Assuntos
COVID-19 , Humanos , Adulto Jovem , Adulto , Pandemias , SARS-CoV-2 , Espiritualidade
8.
BMC Infect Dis ; 22(1): 868, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411430

RESUMO

BACKGROUND: Human brucellosis has become one of the major public health problems in China, and increases atypical manifestations, such as fever of unknown origin (FUO), and misdiagnosis rates has complicated the diagnosis of brucellosis. To date, no relevant study on the relationship between brucellosis and FUO has been conducted. METHODS: We retrospectively reviewed the medical charts of 35 patients with confirmed human brucellosis and prospectively recorded their outcomes by telephone interview. The patients were admitted to the Second Affiliated Hospital of Nanchang University between January 01, 2013 and October 31, 2019. Patient data were collected from hospital medical records. RESULTS: The percentage of males was significantly higher than that of female in FUO (78.95% vs. 21.05%, P < 0.05), and 80% of the patients had a clear history of exposure to cattle and sheep. Moreover, 19 (54%) cases were hospitalized with FUO, among which the patients with epidemiological histories were significantly more than those without (P < 0.05). The incidence of toxic hepatitis in FUO patients was higher than that in non-FUO patients (89% vs. 50%, P < 0.05). Meanwhile, the misdiagnosis rate was considerably higher in the FUO group than in the non-FUO group (100% vs. 63%; P < 0.05). CONCLUSION: Brucellosis is predominantly FUO admission in a non-endemic area of China, accompanied by irregular fever and toxic hepatitis. Careful examination of the epidemiological history and timely improvement of blood and bone marrow cultures can facilitate early diagnosis and prevent misdiagnosis.


Assuntos
Brucelose , Doença Hepática Induzida por Substâncias e Drogas , Febre de Causa Desconhecida , Masculino , Humanos , Feminino , Bovinos , Ovinos , Animais , Febre de Causa Desconhecida/diagnóstico , Febre de Causa Desconhecida/epidemiologia , Febre de Causa Desconhecida/etiologia , Estudos Retrospectivos , Brucelose/complicações , Brucelose/diagnóstico , Brucelose/epidemiologia , Hospitalização
10.
Front Microbiol ; 9: 2724, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483236

RESUMO

Ebolavirus (EBOV) life cycle involves interactions with numerous host factors, but it remains poorly understood, as does pathogenesis. Herein, we synthesized 65 siRNAs targeting host genes mostly connected with aspects of the negative-sense RNA virus life cycle (including viral entry, uncoating, fusion, replication, assembly, and budding). We produced EBOV transcription- and replication-competent virus-like particles (trVLPs) to mimic the EBOV life cycle. After screening host factors associated with the trVLP life cycle, we assessed interactions of host proteins with trVLP glycoprotein (GP), VP40, and RNA by co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP). The results demonstrate that RNAi silencing with 11 siRNAs (ANXA5, ARFGAP1, FLT4, GRP78, HSPA1A, HSP90AB1, HSPA8, MAPK11, MEK2, NTRK1, and YWHAZ) decreased the replication efficiency of trVLPs. Co-IP revealed nine candidate host proteins (FLT4, GRP78, HSPA1A, HSP90AB1, HSPA8, MAPK11, MEK2, NTRK1, and YWHAZ) potentially interacting with trVLP GP, and four (ANXA5, GRP78, HSPA1A, and HSP90AB1) potentially interacting with trVLP VP40. Ch-IP identified nine candidate host proteins (ANXA5, ARFGAP1, FLT4, GRP78, HSPA1A, HSP90AB1, MAPK11, MEK2, and NTRK1) interacting with trVLP RNA. This study was based on trVLP and could not replace live ebolavirus entirely; in particular, the interaction between trVLP RNA and host proteins cannot be assumed to be identical in live virus. However, the results provide valuable information for further studies and deepen our understanding of essential host factors involved in the EBOV life cycle.

11.
Cell Physiol Biochem ; 50(3): 1055-1067, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30355918

RESUMO

BACKGROUND/AIMS: Monoclonal antibodies (mAbs) are presently the most promising treatment against Ebola virus disease (EVD), and cocktail of two or more antibodies likely confers protection through complementary mechanisms. Zaire Ebolavirus (EBOV) glycoprotein (GP) and viral protein 40 (VP40) are targets for designing neutralizing antibodies. Currently, the antiviral therapeutics of mAb-cocktails are still limited solely to anti-GP antibodies,there is no Abs cocktail against Zaire EBOV GP and VP40, which both have important interactions with host cellular membrane. METHODS: We used hybridoma technology to produce anti-Zaire EBOV GP mAb against GP receptor binding domain, and anti-Zaire EBOV VP40 mAbs against the N-terminal domain, the C-terminal domain, respectively; synthesized Zaire EBOV transcription and replication competent virus like particles (trVLPs), which model even all aspects of the EBOV life cycles in order to evaluate the anti-viral effect of mAbs. Then, we characterized the anti- Zaire EBOV trVLPs effect of anti-GP and VP40 mAbs in vitro by real time-PCR, immunofluorescence assay and western blot analysis. RESULTS: Our results demonstrate that anti-GP or anti-VP40 mAbs effectively inhibit trVLPs replication. The cocktails of anti-GP and anti-VP40 mAbs, or between anti-VP40 mAbs, had synergistic anti-trVLPs effect. Meanwhile, the detailed DNA and amino acid sequences of the mAbs were checked. CONCLUSION: The study verifies neutralizing efficacy of anti-GP or anti-VP40 mAb, report promising cocktail of anti-GP and anti-VP40 mAb, or cocktail of two anti-VP40 mAbs. To our knowledge, this is the first account to report the important anti-viral effect of cocktails of anti-GP and anti-VP40 mAbs in vitro.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ebolavirus/metabolismo , Glicoproteínas/imunologia , Proteínas Virais/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Reações Antígeno-Anticorpo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Virais/genética , Proteínas Virais/metabolismo
12.
Appl Microbiol Biotechnol ; 102(15): 6469-6477, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29858958

RESUMO

Recombinant adenoviral (Ad) vectors are highly efficient gene transfer vectors widely used in vaccine development and immunotherapy. To promote the industrial application of Ad vectors, studies focusing on reducing the cost of manufacturing, shortening the preclinical research period, and improving the quality of products are needed. Here, we describe a highly efficient and economical process for producing Ad vector in a novel, single-use bioreactor system suitable for clinical trials. A mini-bioreactor was used for parameter optimization and development of medium replacement protocols for Ad5-GFP production before scale-up. HEK293 cell culture and virus infection were monitored in a disposable AmProtein Current Perfusion Bioreactor and Bioflo310 bioreactor using optimized parameters and medium replacement protocols. The total cell number increased from 2.0 × 109 to 3.2 × 1010 after 6 days of culture. The total number of viral particles obtained in a single batch was 1.2 × 1015. These results demonstrate the efficiency and suitability of this system for Ad vector production for research and GMP applications.


Assuntos
Adenoviridae/fisiologia , Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Terapia Genética/instrumentação , Vetores Genéticos/fisiologia , Microbiologia Industrial/instrumentação , Microbiologia Industrial/métodos , Células HEK293 , Humanos
13.
Cell Physiol Biochem ; 46(2): 633-643, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29617693

RESUMO

BACKGROUND/AIMS: Since the first case of novel H7N9 infection was reported, China has experienced five epidemics of H7N9. During the fifth wave, a highly pathogenic H7N9 strain emerged. In order to assess whether the H7N9 vaccine based on A/Zhejiang/DTID-ZJU01/2013(H7N9) was effective in protecting against highly pathogenic H7N9, we conducted this study. METHODS: Groups of mice were immunized twice by intraperitoneal injection with 500 µl of either split vaccine alone or MF59-adjuvanted vaccine. Serum was collected 2 weeks after the second vaccine booster. The hemagglutinin inhibition test was conducted on vaccine seed and highly pathogenic H7N9 to evaluate the neutralization of highly pathogenic H7N9. We also immunized mice and challenged them with highly pathogenic H7N9. Mice were observed for illness, weight loss, and death at 1 week and 2 weeks post-infection. Then, the mice were sacrificed and lungs were removed. Antibody responses were assessed and pathological changes in the lung tissue were evaluated. RESULTS: The ability of serum to neutralize highly pathogenic H7N9 was reduced. In mice, highly pathogenic H7N9 was more virulent than A/Zhejiang/DTID-ZJU01/2013(H7N9). After challenge with highly pathogenic H7N9, all mice died while mice challenged with A/Zhejiang/DTID-ZJU01/2013(H7N9) all recovered. The A/ZJU01/PR8/2013 split H7N9 avian influenza vaccine was able to protect against infection with highly pathogenic H7N9 in mice, with or without MF59. Moreover, H7N9 vaccine adjuvanted with MF59 produced high antibody levels, which lead to better protection. CONCLUSIONS: The A/ZJU01/PR8/2013 split H7N9 avian influenza vaccine based on A/Zhejiang/DTID-ZJU01/2013(H7N9) is effective in protecting against highly pathogenic H7N9. H7N9 vaccine adjuvanted with MF59 offers better protection against infection with highly pathogenic H7N9. In order to make the H7N9 vaccine applicable to humans, further clinical trials are required to evaluate MF59 adjuvanted vaccine. Meanwhile, the vaccine strain should be updated based on the highly pathogenic H7N9 gene sequence.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Cães , Ensaio de Imunoadsorção Enzimática , Feminino , Hemaglutininas/análise , Hemaglutininas/imunologia , Pulmão/patologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Infecções por Orthomyxoviridae/imunologia , Polissorbatos , RNA Viral/genética , RNA Viral/isolamento & purificação , RNA Viral/metabolismo , Esqualeno/imunologia
14.
Oncotarget ; 8(54): 91828-91840, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29190879

RESUMO

The influenza virus is a serious threat to public health worldwide. A novel avian influenza A (H7N9) virus with a mortality rate of approximately 30% has been identified as an unusually dangerous virus for humans by the World Health Organization. Pathogenic H7N9 continue to represent a public health concern, and several candidate vaccines are currently in development. We generated candidate H7N9 vaccine strains using reverse genetics, consisting of hemagglutinin and neuraminidase genes derived from a human H7N9 virus and the remaining genes from the PR8 (A/PuertoRico/8/34 (H1N1)) virus. This H7N9 vaccine exhibited superior efficacy when combined with MF59 compared to other adjuvants. Immunized BALB/c mice were followed to determine the duration of the protective immune response. Antibody levels decreased to between one-half and one-eighth of the peak values four months after the final dose of the vaccine. Previously vaccinated mice received an A/Zhejiang/DTID-ZJU01/2013 H7N9 challenge six months post-vaccination, and all remained protected. We also verified that MF59 enhanced the HI, MN, and IgG antibody titers to influenza antigens. The humoral immune response and Th2 cytokine production following influenza challenge was potently induced in the animals that received the split vaccine. Therefore, the split H7N9 influenza vaccine with the MF59 adjuvant could effectively induce antibody production and protect mice from H7N9 virus challenge even after six months.

15.
Oncotarget ; 8(33): 55750-55759, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903457

RESUMO

Ebola haemorrhagic fever causes deadly disease in humans and non-human primates resulting from infection with the Ebola virus (EBOV) genus of the family Filoviridae. However, the mechanisms of EBOV lifecycle in host cells, including viral entry, membrane fusion, RNP formation, GP-tetherin interaction, and VP40-inner leaflet association remain poorly understood. This review describes the biological functions of EBOV proteins and their roles in the lifecycle, summarizes the factors related to EBOV proteins or RNA expression throughout the different phases, and reviews advances with regards to the molecular events and mechanisms of the EBOV lifecycle. Furthermore, the review outlines the aspects remain unclear that urgently need to be solved in future research.

16.
Medicine (Baltimore) ; 96(51): e9350, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29390519

RESUMO

The early secreted protein early secretory antigenic target 6(ESAT-6) and the culture filtrate protein 10 (CFP-10) are 2 antigens that are specific to Mycobacterium tuberculosis. These 2 antigens are good targets for tuberculosis (TB) detection.To rapidly diagnose TB across a variety of samples, we developed colloidal gold immunochromatographic strips (ICSs) based on ESAT-6 and CFP-10.The strips were evaluated using 233 samples, including sputum, plasma, and pleural effusion samples.The positive detection rates for ICSs for ESAT-6 and CFP-10 in sputum (culture-positive for M tuberculosis) were 100% and 91.2%, respectively. The positive detection rates for ICSs for ESAT-6 and CFP-10 in plasma were 34.1% and 29.4%, respectively. The positive detection rates for ICSs for ESAT-6 and CFP-10 in pleural effusion were 64.7% and 55.9%, respectively. Experimental analysis of culture supernatant showing that the ICS developed for ESAT-6 had a sensitivity of 100% and a specificity of 91.2%. While the ICS developed for CFP-10 had a sensitivity of 91.2% and a specificity of 88.2%.The validity of the test is limited by source of sample. The technique is sensitive and specific for samples in sputum and culture media but not for plasma or pleural effusion samples. Detection of M tuberculosis using ICSs is rapid, simple, and relatively effective; thus, ICSs are a potential screening tool for TB.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Tuberculose/diagnóstico , Técnicas Bacteriológicas , Distribuição de Qui-Quadrado , Cromatografia de Afinidade/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Reação em Cadeia da Polimerase/métodos , Estudos de Amostragem , Sensibilidade e Especificidade , Escarro/microbiologia
17.
Oncotarget ; 7(49): 81012-81025, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27768591

RESUMO

Developing a safe and effective H7N9 influenza vaccine was initiated in early spring 2013, following human infections with a novel avian influenza A (H7N9) virus. In this study, a candidate H7N9 vaccine seed strain is produced using reverse genetics, with HA and NA derived from a human H7N9 virus and the remaining genes from the PR8 backbone virus which grows well in eggs. We verified that the virulence and transmissibility of the recombinant H7N9 vaccine seed strain were decreased as compared to wild-type H7N9 virus, to levels comparable with PR8. Using the seed virus, we produced a monovalent split influenza A (H7N9) MF59-adjuvanted vaccine that was immunogenic in mice. Our H7N9 vaccine is selected for clinical investigation and potential human use. To assess the safety of our H7N9 vaccine, we performed acute toxicity, repeated dose toxicity and active systemic anaphylaxis tests. Our results showed that, under the conditions used in this study, the NOEAL (no obvious adverse effect level) was 30 µg/0.5 mL.


Assuntos
Adjuvantes Imunológicos/farmacologia , Imunogenicidade da Vacina , Subtipo H7N9 do Vírus da Influenza A/efeitos dos fármacos , Vacinas contra Influenza/farmacologia , Infecções por Orthomyxoviridae/prevenção & controle , Polissorbatos/farmacologia , Esqualeno/farmacologia , Adjuvantes Imunológicos/toxicidade , Animais , Castração , Modelos Animais de Doenças , Cães , Feminino , Furões , Cobaias , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/imunologia , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/toxicidade , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos C57BL , Nível de Efeito Adverso não Observado , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Polissorbatos/toxicidade , Ratos Sprague-Dawley , Medição de Risco , Esqualeno/imunologia , Esqualeno/toxicidade , Fatores de Tempo , Vacinas Atenuadas/farmacologia , Vacinas Sintéticas/farmacologia , Virulência
18.
Int J Mol Med ; 30(6): 1498-504, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22992810

RESUMO

Chronic hepatitis B (CHB) virus infection is caused by compromised host immunity, but the precise underlying mechanism remains unclear. Retinoic acid-inducible gene I (RIG-I) triggers antiviral immunity by inducing interferon-ß (IFN-ß) production following viral infection. To investigate the role of the RIG-I-IFN-ß signaling pathway in monocyte-derived dendritic cells (moDCs) during CHB infection, moDCs were generated by stimulating CD14+ monocytes in vitro. MoDCs from patients with CHB, acute hepatitis B (AHB) and healthy controls (HCs) were challenged with vesicular stomatitis virus (VSV) and the levels of RIG-I, IFN-ß promoter stimulator 1 (IPS-1) and IFN-ß in the stimulated moDCs were determined. Following 16 h of VSV stimulation, RIG-I expression was reduced by 50% in moDCs from CHB patients and by 70% in moDCs from AHB patients relative to HC moDCs, concomitant with a 20% decrease in IFN-ß expression in CHB patients relative to AHB patients and HCs. Additionally, a significant correlation between the RIG-I/IPS-1 ratio and alanine aminotransferase (ALT) level was observed. To further investigate the function of RIG-I in chronic hepatitis B virus (HBV) infection, HepG2 or HepG2.2.15 (HBV-transformed) cell lines were challenged with VSV following RIG-1 transfection. IFN-ß induction was suppressed in HepG2.2.15 cells, but was restored following RIG-I transfection. Taken together, these data indicate that compromised moDC function in CHB patients is attributable to an impaired RIG-I-IFN-ß signaling pathway, which results in compromised host viral clearance and HBV persistence in a susceptible population.


Assuntos
RNA Helicases DEAD-box/metabolismo , Hepatite B Crônica/metabolismo , Interferon beta/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Estudos de Casos e Controles , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Feminino , Células Hep G2 , Vírus da Hepatite B/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Interferon beta/genética , Masculino , Receptores Imunológicos , Ativação Transcricional , Vesiculovirus/fisiologia
19.
Apoptosis ; 17(7): 702-16, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22374434

RESUMO

Acute liver failure (ALF) still has an unacceptable high mortality rate, despite substantial improvements with multidisciplinary care. The precise underlying mechanism of ALF remains to be explored. It has been reported that microRNAs (miRNAs) are novel regulators in a number of liver diseases, but the role of miRNAs in the development of ALF is not fully understood. An ALF murine model was generated by ip injection of D: -GalN/LPS, which was confirmed with histopathology and biochemistry. The hepatic miRNA expression profile in ALF was determined by microarray and verified by qRT-PCR. The functions and signal pathways of the targeted genes of these deregulated miRNAs were predicted, using bioinformatics analysis. The possible underlying mechanism was investigated by exploring the relationship between miRNA modification and hepatocyte apoptosis. There were a total of 95 significantly changed miRNAs in ALF compared to mock-treated (P < 0.01). Among these 95 miRNAs, 20 were up-regulated and 26 were down-regulated at both 5 and 7 h time points. Bioinformatics analysis predicted that some of these 46 miRNAs were involved in apoptosis. Among the up-regulated miRNAs involved in apoptosis, miR-15b and miR-16 showed the highest enrichment and targeted the common anti-apoptotic gene, BCL2. Our in vitro data demonstrated that miR-15b and/or miR-16 regulated BCL2 at the protein level. Inhibition of miR-15b and/or miR-16 reduced hepatic apoptosis and TNF production. These data suggest that miR-15b and miR-16 regulate TNF mediated hepatic apoptosis via BCL2 during ALF, and may shed light on the development of a therapeutic strategy for treatment of ALF.


Assuntos
Apoptose/genética , Hepatócitos/metabolismo , Falência Hepática Aguda/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Biologia Computacional , Regulação para Baixo/genética , Citometria de Fluxo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Hepatócitos/patologia , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , Falência Hepática Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Regulação para Cima/genética
20.
Nanoscale Res Lett ; 5(8): 1333-9, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20676196

RESUMO

Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO) substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20-80 nm in diameter, up to 6 µm in length, density <40 nm apart) at substrate temperatures down to 300°C. Electron microscopy and other characterization techniques show nanowires with distinct morphologies when grown under different conditions. The effect of reaction parameters including reaction time, temperature, and carrier gas flow rate on the size, morphology, crystalline structure, and density of ZnO nanowires has been investigated. The nanowires grown by this method have a diameter, length, and density appropriate for use in fabricating hybrid polymer/metal oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...