Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37030712

RESUMO

Graph learning can effectively characterize the similarity structure of sample pairs, hence multiple kernel clustering based on graph learning (MKC-GL) achieves promising results on nonlinear clustering tasks. However, previous methods confine to a "three-stage" scheme, that is, affinity graph learning, Laplacian construction, and clustering indicator extracting, which results in the information distortion in the step alternating. Meanwhile, the energy of Laplacian reconstruction and the necessary cluster information cannot be preserved simultaneously. To address these problems, we propose a one-stage shifted Laplacian refining (OSLR) method for multiple kernel clustering (MKC), where using the "one-stage" scheme focuses on Laplacian learning rather than traditional graph learning. Concretely, our method treats each kernel matrix as an affinity graph rather than ordinary data and constructs its corresponding Laplacian matrix in advance. Compared to the traditional Laplacian methods, we transform each Laplacian to an approximately shifted Laplacian (ASL) for refining a consensus Laplacian. Then, we project the consensus Laplacian onto a Fantope space to ensure that reconstruction information and clustering information concentrate on larger eigenvalues. Theoretically, our OSLR reduces the memory complexity and computation complexity to O(n) and O(n2) , respectively. Moreover, experimental results have shown that it outperforms state-of-the-art MKC methods on multiple benchmark datasets.

2.
Sensors (Basel) ; 20(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751627

RESUMO

In vehicular ad hoc networks (VANETs), the security and privacy of vehicle data are core issues. In order to analyze vehicle data, they need to be computed. Encryption is a common method to guarantee the security of vehicle data in the process of data dissemination and computation. However, encrypted vehicle data cannot be analyzed easily and flexibly. Because homomorphic encryption supports computations of the ciphertext, it can completely solve this problem. In this paper, we provide a comprehensive survey of secure computation based on homomorphic encryption in VANETs. We first describe the related definitions and the current state of homomorphic encryption. Next, we present the framework, communication domains, wireless access technologies and cyber-security issues of VANETs. Then, we describe the state of the art of secure basic operations, data aggregation, data query and other data computation in VANETs. Finally, several challenges and open issues are discussed for future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...