Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069292

RESUMO

Rice (Oryza sativa L.) is a staple food for more than half of the global population. Various abiotic and biotic stresses lead to accumulation of reactive oxygen species in rice, which damage macromolecules and signaling pathways. Rice has evolved a variety of antioxidant systems, including glutaredoxin (GRX), that protect against various stressors. A total of 48 GRX gene loci have been identified on 11 of the 12 chromosomes of the rice genome; none were found on chromosome 9. GRX proteins were classified into four categories according to their active sites: CPYC, CGFS, CC, and GRL. In this paper, we summarized the recent research advances regarding the roles of GRX in rice development regulation and response to stresses, and discussed future research perspectives related to rice production. This review could provide information for rice researchers on the current status of the GRX and serve as guidance for breeding superior varieties.


Assuntos
Oryza , Oryza/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Melhoramento Vegetal , Estresse Fisiológico/genética , Antioxidantes/metabolismo
2.
Front Plant Sci ; 14: 1136849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968383

RESUMO

Rice kernel quality has vital commercial value. Grain chalkiness deteriorates rice's appearance and palatability. However, the molecular mechanisms that govern grain chalkiness remain unclear and may be regulated by many factors. In this study, we identified a stable hereditary mutant, white belly grain 1 (wbg1), which has a white belly in its mature grains. The grain filling rate of wbg1 was lower than that of the wild type across the whole filling period, and the starch granules in the chalky part were oval or round and loosely arranged. Map-based cloning showed that wbg1 was an allelic mutant of FLO10, which encodes a mitochondrion-targeted P-type pentatricopeptide repeat protein. Amino acid sequence analysis found that two PPR motifs present in the C-terminal of WBG1 were lost in wbg1. This deletion reduced the splicing efficiency of nad1 intron 1 to approximately 50% in wbg1, thereby partially reducing the activity of complex I and affecting ATP production in wbg1 grains. Furthermore, haplotype analysis showed that WBG1 was associated with grain width between indica and japonica rice varieties. These results suggested that WBG1 influences rice grain chalkiness and grain width by regulating the splicing efficiency of nad1 intron 1. This deepens understanding of the molecular mechanisms governing rice grain quality and provides theoretical support for molecular breeding to improve rice quality.

3.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768538

RESUMO

Soil salinity is one of the major abiotic stresses limiting rice growth. Hybrids outperform their parents in salt tolerance in rice, while its mechanism is not completely understood. In this study, a higher seedling survival was observed after salt treatment in an inter-subspecific hybrid rice, Zhegengyou1578 (ZGY1578), compared with its maternal japonica Zhegeng7A (ZG7A) and paternal indica Zhehui1578 (ZH1578). A total of 2584 and 3061 differentially expressed genes (DEGs) with at least twofold changes were identified between ZGY1578 and ZG7A and between ZGY1578 and ZH1578, respectively, in roots under salt stress using the RNA sequencing (RNA-Seq) approach. The expressions of a larger number of DEGs in hybrid were lower or higher than those of both parents. The DEGs associated with transcription factors, hormones, and reactive oxygen species (ROS)-related genes might be involved in the heterosis of salt tolerance. The expressions of the majority of transcription factors and ethylene-, auxin-, and gibberellin-related genes, as well as peroxidase genes, were significantly higher in the hybrid ZGY1578 compared with those of both parents. The identified genes provide valuable clues to elucidate the heterosis of salt tolerance in inter-subspecific hybrid rice.


Assuntos
Vigor Híbrido , Oryza , Vigor Híbrido/genética , Oryza/genética , Tolerância ao Sal/genética , Perfilação da Expressão Gênica , Transcriptoma , Regulação da Expressão Gênica de Plantas
4.
Anticancer Drugs ; 34(1): 81-91, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36066399

RESUMO

Increasing circular RNAs (circRNAs) have been identified as pivotal players in nonsmall cell lung cancer (NSCLC). The study will explore the function and mechanism of circRNA High Mobility Group AT-hook 2 (circHMGA2) in NSCLC. The circHMGA2, microRNA-331-3p (miR-331-3p) and HMGA2 expression analyses were performed via quantitative real-time PCR. Cell proliferation was assessed via Cell Counting Kit-8 and colony formation assays. Transwell migration/invasion assays were used for measuring cell metastasis. Glucose consumption and lactate production were determined for glycolytic evaluation. Western blot was used to detect the protein expression of HMGA2 and glycolytic markers. Target analysis was performed by dual-luciferase reporter, RNA immunoprecipitation and RNA pull-down assays. Xenograft tumor assay in mice was conducted for the investigation of circHMGA2 in vivo . CircHMGA2 was overexpressed in NSCLC, and high circHMGA2 level might be related to NSCLC metastasis and poor prognosis. In-vitro assays suggested that NSCLC cell growth, metastasis and glycolysis were retarded by downregulation of circHMGA2. Upregulation of HMGA2 was shown to return the anticancer response of circHMGA2 knockdown in NSCLC cells. Through interacting with miR-331-3p, circHMGA2 could regulate the expression of HMGA2. In addition, circHMGA2/miR-331-3p and miR-331-3p/HMGA2 axes were affirmed in NSCLC regulation. In-vivo analysis indicated that circHMGA2 inhibition also reduced tumorigenesis and glycolysis of NSCLC via the miR-331-3p/HMGA2 axis. This study disclosed the oncogenic role of circHMGA2 and the regulatory circHMGA2/miR-331-3p/HMGA2 axis in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
5.
Plants (Basel) ; 10(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34834796

RESUMO

Soil salinity is a key source of abiotic stress in the cultivation of rice. In this study, two currently cultivated japonica rice species-Zhegeng 78 (salt-tolerant) and Zhegeng 99 (salt-sensitive)-with similar backgrounds were identified and used to investigate their differential responses to salt stress at the post-germination and seedling stages. Quantitative RT-PCR analysis demonstrated that the expression of OsSOS1, OsHAK1, and OsHAK5 at the post-germination stage, and the expression of OsHKT1,1, OsHTK2,1, and OsHAK1 at the seedling stage, were significantly higher in the salt-tolerant Zhegeng 78 compared with those of the salt-sensitive Zhegeng 99 under salt stress. The significantly lower Na+ net uptake rate at the post-germination and higher K+ net uptake rates at the post-germination and seedling stages were observed in the salt-tolerant Zhegeng 78 compared with those of the salt-sensitive Zhegeng 99 under salt stress. Significantly higher activity of peroxidase (POD) and the lower hydrogen peroxide (H2O2) accumulation were observed in the salt-tolerant Zhegeng 78 compared with those of salt-sensitive Zhegeng 99 under salt stress at the seeding stage. The salt-tolerant Zhegeng 78 might be valuable in future cultivation in salinity soils.

6.
BMC Genomics ; 21(1): 238, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183693

RESUMO

BACKGROUND: Glyphosate has become the most widely used herbicide in the world. Therefore, the development of new varieties of glyphosate-tolerant crops is a research focus of seed companies and researchers. The glyphosate stress-responsive genes were used for the development of genetically modified crops, while only the EPSPS gene has been used currently in the study on glyphosate-tolerance in rice. Therefore, it is essential and crucial to intensify the exploration of glyphosate stress-responsive genes, to not only acquire other glyphosate stress-responsive genes with clean intellectual property rights but also obtain non-transgenic glyphosate-tolerant rice varieties. This study is expected to elucidate the responses of miRNAs, lncRNAs, and mRNAs to glyphosate applications and the potential regulatory mechanisms in response to glyphosate stress in rice. RESULTS: Leaves of the non-transgenic glyphosate-tolerant germplasm CA21 sprayed with 2 mg·ml- 1 glyphosate (GLY) and CA21 plants with no spray (CK) were collected for high-throughput sequencing analysis. A total of 1197 DEGs, 131 DELs, and 52 DEMs were identified in the GLY samples in relation to CK samples. Genes were significantly enriched for various biological processes involved in detoxification of plant response to stress. A total of 385 known miRNAs from 59 miRNA families and 94 novel miRNAs were identified. Degradome analysis led to the identification of 32 target genes, of which, the squamosa promoter-binding-like protein 12 (SPL12) was identified as a target of osa-miR156a_L + 1. The lncRNA-miRNA-mRNA regulatory network consisted of osa-miR156a_L + 1, two transcripts of SPL12 (LOC_Os06g49010.3 and LOC_Os06g49010.5), and 13 lncRNAs (e.g., MSTRG.244.1 and MSTRG.16577.1). CONCLUSION: Large-scale expression changes in coding and noncoding RNA were observed in rice mainly due to its response to glyphosate. SPL12, osa-miR156, and lncRNAs (e.g., MSTRG.244.1 and MSTRG.16577.1) could be a novel ceRNA mechanism in response to glyphosate in rice by regulating transcription and metal ions binding. These findings provide a theoretical basis for breeding glyphosate-tolerant rice varieties and for further research on the biogenesis of glyphosate- tolerance in rice.


Assuntos
MicroRNAs/genética , Oryza/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Estresse Fisiológico/genética , Produtos Agrícolas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Sequenciamento de Nucleotídeos em Larga Escala , Oryza/efeitos dos fármacos , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...