Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 688, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39026161

RESUMO

BACKGROUND: Laccase (LAC) gene family plays a pivotal role in plant lignin biosynthesis and adaptation to various stresses. Limited research has been conducted on laccase genes in common beans. RESULTS: 29 LAC gene family members were identified within the common bean genome, distributed unevenly in 9 chromosomes. These members were divided into 6 distinct subclades by phylogenetic analysis. Further phylogenetic analyses and synteny analyses indicated that considerable gene duplication and loss presented throughout the evolution of the laccase gene family. Purified selection was shown to be the major evolutionary force through Ka / Ks. Transcriptional changes of PvLAC genes under low temperature and salt stress were observed, emphasizing the regulatory function of these genes in such conditions. Regulation by abscisic acid and gibberellins appears to be the case for PvLAC3, PvLAC4, PvLAC7, PvLAC13, PvLAC14, PvLAC18, PvLAC23, and PvLAC26, as indicated by hormone induction experiments. Additionally, the regulation of PvLAC3, PvLAC4, PvLAC7, and PvLAC14 in response to nicosulfuron and low-temperature stress were identified by virus-induced gene silence, which demonstrated inhibition on growth and development in common beans. CONCLUSIONS: The research provides valuable genetic resources for improving the resistance of common beans to abiotic stresses and enhance the understanding of the functional roles of the LAC gene family.


Assuntos
Lacase , Família Multigênica , Phaseolus , Filogenia , Estresse Fisiológico , Phaseolus/genética , Phaseolus/enzimologia , Phaseolus/fisiologia , Lacase/genética , Lacase/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Genes de Plantas
2.
Int J Biol Macromol ; 267(Pt 2): 131588, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615860

RESUMO

Dietary selenium (Se) supplementation has recently received increasing attention; however, Selenium nanoparticles (SeNPs) exhibit poor stability and tend to aggregate in aqueous solution. Therefore, enhancing the stability of SeNPs and their effective delivery to plants remain challenging. In this study, sodium alginate (SA) and lysozyme (LZ) were reacted via the wet-heat Maillard reaction (MR) to obtain amphiphilic alginate-based polymers (SA-LZ). Alkyl glycosides (APG) were introduced into SA-LZ to enhance the deposition of SeNPs in leaves. Thus, a renewable and degradable polysaccharide-based material (SA-LZ/APG) loaded with Se formed an amphiphilic alginate-based-based shell with a Se core. Notably, the encapsulation of SeNPs into a polysaccharide base (SA-LZ/APG) increased the stabilization of SeNPs and resulted in orange-red, zero-valent, monoclinic and spherical SeNPs with a mean diameter of approximately 43.0 nm. In addition, SA-LZ/APG-SeNPs reduced the interfacial tension of plant leaves and increased the Se content of plants compared to the blank group. In vitro studies have reported that SA-LZ/APG-SeNPs and SA-LZ-SeNPs have significantly better clearance of DDPH and ABTS than that of APG-SeNPs. Thus, we believe that SA-LZ/APG is a promising smart delivery system that can synergistically enhance the stability of SeNPs in aqueous solutions and improve the bioavailability of Se nutrient solutions.


Assuntos
Alginatos , Glicosídeos , Nanopartículas , Selênio , Alginatos/química , Selênio/química , Nanopartículas/química , Glicosídeos/química , Folhas de Planta/química , Muramidase/química , Tensoativos/química , Estabilidade de Medicamentos
3.
Carbohydr Polym ; 334: 121892, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553196

RESUMO

High quantum yield polysaccharide-based materials are significative for the dynamic anti-counterfeiting, while that are limited by weak fluorescence. However, natural polysaccharides with weak fluorescence are not suitable for anti-counterfeiting. Herein, alginate derivatives (SA-PBA) exhibiting aggregation-induced emission with high-quantum yields were synthesized by grafting phenylboronic acid (PBA) onto a sodium alginate (SA) chain. As the concentration increases, polymer assembly can be induced to form more compact soft colloidal aggregates, which enhances the fluorescence properties of alginate derivatives by introducing B â† N coordination bonds in the hydrophobic microregions. Interestingly, the clustered aggregates of SA-PBA can be dynamically controlled by pH, realizing the reversible adjustment of fluorescence. The corresponding mechanism is revealed by the combination of coarse-grained simulations and experiments. It is found that SA-PBA uses a hydrophobic driving force and hydrogen bond interaction to self-assemble in an aqueous solution and promote fluorescence emission. Moreover, the fluorescence quantum yield of SA-PBA can reach 14.4 % and can be reversibly altered by tuning soft colloidal microstructures. Therefore, a reversible information encryption system of SA-PBA is developed for anti-counterfeiting. This work shed some light on how to design novel anti-counterfeit materials based on natural polysaccharides and optimize the dynamic fluorescence conditions.

4.
Ecotoxicol Environ Saf ; 268: 115732, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000301

RESUMO

Glutathione plays a critical role in plant growth, development and response to stress. It is a major cellular antioxidant and is involved in the detoxification of xenobiotics in many organisms, including plants. However, the role of glutathione-dependent redox homeostasis and associated molecular mechanisms regulating the antioxidant system and pesticide metabolism remains unclear. In this study, endogenous glutathione levels were manipulated by pharmacological treatments with glutathione synthesis inhibitors and oxidized glutathione. The application of oxidized glutathione enriched the cellular oxidation state, reduced the activity and transcript levels of antioxidant enzymes, upregulated the expression level of nitric oxide and Ca2+ related genes and the content, and increased the residue of chlorothalonil in tomato leaves. Further experiments confirmed that glutathione-induced redox homeostasis is critical for the reduction of pesticide residues. RNA sequencing analysis revealed that miRNA156 and miRNA169 that target transcription factor SQUAMOSA-Promoter Binding Proteins (SBP) and NUCLEAR FACTOR Y (NFY) potentially participate in glutathione-mediated pesticide degradation in tomato plants. Our study provides important clues for further dissection of pesticide degradation mechanisms via miRNAs in plants.


Assuntos
Praguicidas , Solanum lycopersicum , Antioxidantes/metabolismo , Solanum lycopersicum/genética , Dissulfeto de Glutationa/metabolismo , Glutationa/metabolismo , Oxirredução , Praguicidas/metabolismo , Plantas/metabolismo , Homeostase , Estresse Oxidativo
5.
J Colloid Interface Sci ; 645: 580-590, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37167908

RESUMO

The soft interfacial template-assisted confined self-assembly of block copolymers (BCPs) guiding colloidal aggregates has been extensively investigated by interfacial instability. Whether the macromolecular polymer architectonics possessed stimulus-responsive self-regulated structural controllability more readily implement the morphological diversity of colloidal aggregates. Herein, we in-situ constructed the alginate-modified ß-cyclodextrin/azobenzene-functionalized alkyl chains (Alg-ß-CD/AzoC12) system by supramolecular host-guest interfacial recognition-engineered strategy, in which possessed photo-stimulated responsive structural reconfigurability by modulating assembly/disassembly behaviors between CD and Azo at oil/water interface. The host-guest droplet interfaces acted as soft templates managing interfacial instability by synergistically integrating supra-amphiphilic host-guest polymers with cosurfactants, further constructing various soft supracolloidal aggregates, including soft nanoaggregates, microspheres with tunable degrees of surface roughness. Additionally, the stimuli-altering structural reconfigurability of supramolecular host-guest polymers was regulated by ultraviolet/visible irradiation, endowing soft aggregates with structural diversity. It's highly anticipated that the supramolecular host-guest interfacial recognition self-assembly establishes great bridge between supramolecular host-guest chemistry and colloid interface science.

6.
Biointerphases ; 18(3)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37195015

RESUMO

Protein coronas, formed by proteins and nanomaterials, have various applications in the biomedical field. Here, large-scale simulations of protein coronas have been carried out by an efficient mesoscopic coarse-grained method with the BMW-MARTINI force field. The effects of protein concentration, size of silica nanoparticles (SNPs), and ionic strength on the formation of lysozyme-SNP coronas are investigated at the microsecond time scale. Simulations results indicate that (i) an increase in the amount of lysozyme is favorable for the conformation stability of adsorbed lysozyme on SNPs. Moreover, the formation of ringlike and dumbbell-like aggregations of lysozyme can further reduce the conformational loss of lysozyme; (ii) for a smaller SNP, the increase of protein concentration exhibits a greater effect on the adsorption orientation of lysozyme. The dumbbell-like lysozyme aggregation is unfavorable for the stability of lysozyme's adsorption orientation; however, the ringlike lysozyme aggregation can enhance the orientation stability; (iii) the increase of ionic strength can reduce the conformation change of lysozyme and accelerate the aggregation of lysozyme during their adsorption process on SNPs. This work provides some insights into the formation of protein coronas and some valuable guidelines for the development of novel biomolecule-NP conjugates.


Assuntos
Nanopartículas , Nanoestruturas , Muramidase/metabolismo , Dióxido de Silício , Adsorção
7.
ACS Appl Mater Interfaces ; 15(19): 23989-24002, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37134135

RESUMO

Significant challenges remain in designing sufficient viscoelasticity polysaccharide-based high internal phase Pickering emulsions (HIPPEs) as soft materials for 3D printing. Herein, taking advantage of the interfacial covalent bond interaction between modified alginate (Ugi-OA) dissolved in the aqueous phase and aminated silica nanoparticles (ASNs) dispersed in oil, HIPPEs with printability were obtained. Using multitechniques coupling a conventional rheometer with a quartz crystal microbalance with dissipation monitoring, the correlation between interfacial recognition coassembly on the molecular scale and the stability of whole bulk HIPPEs on the macroscopic scale can be clarified. The results showed that Ugi-OA/ASNs assemblies (NPSs) were strongly retargeted into the oil-water interface due to the specific Schiff base-binding between ASNs and Ugi-OA, further forming thicker and more rigid interfacial films on the microscopic scale compared with that of the Ugi-OA/SNs (bared silica nanoparticles) system. Meanwhile, flexible polysaccharides also formed a 3D network that suppressed the motion of the droplets and particles in the continuous phase, endowing the emulsion with appropriately viscoelasticity to manufacture a sophisticated "snowflake" architecture. In addition, this study opens a novel pathway for the construction of structured all-liquid systems by introducing an interfacial covalent recognition-mediated coassembly strategy, showing promising applications.

8.
Front Plant Sci ; 14: 1097001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875623

RESUMO

Groundnut or peanut (Arachis hypogaea) is a legume crop. Its seeds are rich in protein and oil. Aldehyde dehydrogenase (ALDH, EC: 1.2.1.3) is an important enzyme involved in detoxification of aldehyde and cellular reactive oxygen species, as well as in attenuation of lipid peroxidation-meditated cellular toxicity under stress conditions. However, few studies have been identified and analyzed about ALDH members in Arachis hypogaea. In the present study, 71 members of the ALDH superfamily (AhALDH) were identified using the reference genome obtained from the Phytozome database. A systematic analysis of the evolutionary relationship, motif, gene structure, cis-acting elements, collinearity, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and expression patterns was conducted to understand the structure and function of AhALDHs. AhALDHs exhibited tissue-specific expression, and quantitative real-time PCR identified significant differences in the expression levels of AhALDH members under saline-alkali stress. The results revealed that some AhALDHs members could be involved in response to abiotic stress. Our findings on AhALDHs provide insights for further study.

9.
Carbohydr Polym ; 299: 120170, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876785

RESUMO

Functional Pickering emulsions that depend on the interparticle interactions hold promise for building template materials. A novel coumarin-grafting alginate-based amphiphilic telechelic macromolecules (ATMs) undergoing photo-dimerization enhanced particle-particle interactions and changed the self-assembly behavior in solutions. The influence of self-organization of polymeric particles on the droplet size, microtopography, interfacial adsorption and viscoelasticity of Pickering emulsions were further determined by multi-scale methodology. Results showed that stronger attractive interparticle interactions of ATMs (post-UV) endowed Pickering emulsion with small droplet size (16.8 µm), low interfacial tension (9.31 mN/m), thick interfacial film, high interfacial viscoelasticity and adsorption mass, and well stability. The high yield stress, outstanding extrudability (n1 < 1), high structure maintainability, and well shape retention ability, makes them ideal inks for direct 3D printing without any additions. The ATMs provides an increased capacity to produce stable Pickering emulsions with tailoring their interfacial performances and, providing a platform for fabricating and developing alginate-based Pickering emulsion-templated materials.

10.
Carbohydr Polym ; 310: 120720, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36925246

RESUMO

Polysaccharide-based soft colloidal particles mediated by the dynamic bonding-engineered interfacial self-assembly can regulate the properties of oil-water interfacial films, availing the stability of emulsions under a wide pH range. The amphiphilic phenylboronic alginate soft colloidal particles (Alg-PBA) were designed to stabilize pH-responsive Pickering emulsions (PEs). Combining stability analysis with quartz crystal microbalance and dissipation monitoring (QCM-D), the microstructure and viscoelasticity of Alg-PBA at the oil-water interface were determined. The results showed that PEs stabilized by Alg-PBA due to a thicker and stronger viscoelastic interface film induced by BO bonds and hydrogen bonds. The structure-function relationship of the Alg-PBA emulsifier driven by dynamic bonds was further elaborated at multiple scales by laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Meanwhile, the microstructure of aerogels templated by emulsion could be tuned by adjusting dynamic bonds, which provides a new idea for polysaccharide soft material engineering.

11.
Int J Biol Macromol ; 231: 123233, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36642363

RESUMO

Hydrophobically modified sodium alginate stabilizes benzene in water emulsions. The stability of the emulsion is related to the interface properties at the mesoscopic scale, but the details of the polymer adsorption, conformation and organization at oil/water interfaces at the microscopic scale remain largely elusive. In this study, hydrophobically modified sodium alginate was used as a representative of amphiphilic polymers for prediction of distribution of HMSA at the oil/water interface by coarse-grained molecular dynamics simulation. The result showed that driven by the interaction energy between the hydrophobic segment and benzene, HMSA will actively accumulate at the oil/water interface. The HMSA molecules parallel to the oil/water interface prevent the hydrophobic segments in the micelles from approaching the oil/water interface, so that the micelles can exist stably by steric hindrance. This study would be helpful to understand the aggregation behavior of amphiphilic polymers at the oil/water interface, these results can have applications in diverse sectors such as drug, food industry, where polymers are used to stabilize emulsions.


Assuntos
Micelas , Simulação de Dinâmica Molecular , Emulsões/química , Benzeno , Polímeros/química
12.
Int J Biol Macromol ; 224: 1244-1251, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306916

RESUMO

The controlled release of nitric oxide (NO) is significantly crucial in the NO-related biomedical field. In the current work, the controlled release of NO from alginate microspheres was achieved through the direct impregnation of S-nitroso-N-acetyl-penicillamine (SNAP) in the gelation of sodium alginate with calcium ions. The loading rate of SNAP in alginate microspheres was obtained in a range of 0.69 %­27.5 %. Specifically, the longest NO release time reached up to ∼93 h. Furthermore, the structure, thermal properties, and morphology were fully characterized. During the antibacterial studies, the NO-releasing spheres can produce a great bactericidal effect on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The alginate microspheres impregnated with 315 mg SNAP (sphere size: 2.88 mm) can effectively reduce the number of bacteria by 7 orders of magnitude with an inhibition rate up to 100 %. Therefore, we anticipated that these NO-releasing alginate microspheres would have great potential for biomedical-related applications.


Assuntos
Alginatos , Óxido Nítrico , Óxido Nítrico/química , Preparações de Ação Retardada/química , Alginatos/química , Microesferas , Staphylococcus aureus , Escherichia coli , S-Nitroso-N-Acetilpenicilamina/química , S-Nitroso-N-Acetilpenicilamina/farmacologia , Antibacterianos/farmacologia
13.
Food Chem X ; 16: 100511, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36519087

RESUMO

γ-aminobutyric acid (GABA) has been reported to improve stress resistance in plants. Nonetheless, little is known about the effects of GABA on the nutritional quality and regulatory mechanisms of edamame. Therefore, we analyzed the flavonoid and amino acid (AA) metabolism and the effects of GABA on the nutrient content of edamame seeds through physiological and metabolomic analyses. Exogenous GABA increased endogenous GABA metabolism and GABA transaminase activity and enhanced the oxoglutarate content, which entered into nitrogen metabolism and increased the activity and expression of nitrogen metabolism-related enzymes, to accumulate AAs and bioactive peptides. Meanwhile, exogenous GABA induced the metabolism of flavonoids, including total flavonoids, anthocyanins, 6''-o-malonyglycitin, glycitin, ononin, cyanin, and ginkgetin, by increasing the activity and expression of flavonoid biosynthetic enzymes. This is the first study to reveal that GABA effectively improves the nutritional quality of edamame through the accumulation of AAs, bioactive peptides, isoflavones, anthocyanins, sugars, and organic acids.

14.
Carbohydr Polym ; 297: 119904, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184125

RESUMO

The regulation of the magnitude of the depletion effect is necessary for accurately predicting and explaining the emulsion stabilization mechanism. Herein, the bacterial cellulose/carboxymethyl chitosan (BC/CCS) complexes with tunable assembled behaviors were prepared and designed via electrostatic interaction. Specially, the emulsions stabilized by BC/CCS complexes exhibited excellent stability as compared with that stabilized by BC polymers alone. At pH 9.6, BC/CCS complexes in the continuous phase induced long-range depletion-stabilization effect to stabilize emulsions. Additionally, the magnitude of depletion effect of BC/CCS complexes could be improved by increasing BC concentration, and effectively stabilized emulsions. Furthermore, with the decrease to pH 7.0, the interfacial adsorption layers at the oil-water interface prevented oil droplets from agglomerating, but did not show better emulsion stability. These results clarified that the magnitude of the depletion effect could be controlled by altering BC-based complexes particles, which would be useful for the applications of emulsions in numerous fields.


Assuntos
Quitosana , Adsorção , Bactérias , Celulose/química , Quitosana/química , Emulsões/química , Água/química
15.
Physiol Mol Biol Plants ; 28(6): 1261-1276, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35910446

RESUMO

Abiotic stress caused by unsuitable environmental changes brings serious impacts on the growth and development of sorghum, resulting in significant loss in yield and quality every year. Phospholipase D is one of the key enzymes that catalyze the hydrolysis of phospholipids, and participates in plants response to abiotic stresses and phytohormones, whereas as the main producers of Phosphatidic acid (PA) signal, the detailed information about Phospholipase D associated (SbPLD) family in sorghum has been rarely reported. This study was performed to identify the PLD family gene in sorghum based on the latest genome annotation and to determine the expression of PLDs under abiotic stresses by qRT-PCR analysis. In this study, 13 PLD genes were identified in sorghum genome and further divided into 7 groups according to the phylogenetic analysis. All sorghum PLD family members harbored two conserved domains (HDK1&2) with catalytic activity, and most members contained a C2 domain. In ζ subfamily, C2 domain was replaced by PX and PH domain. The exon-intron structure of SbPLD genes within the same subfamily was highly conservative. The tissue specific expression analysis revealed different expression of SbPLD genes in various developmental stages. High level expression of SbPLDα3 was observed in almost all tissues, whereas SbPLDα4 was mainly expressed in roots. Under abiotic stress conditions, SbPLD genes responded actively to NaCl, ABA, drought (PEG) and cold (4 °C) treatment at the transcriptional level. The expression of SbPLDß1 was significantly up-regulated, while the transcription of SbPLDζ was suppressed under various stress conditions. In addition, SbPLDß1 and SbPLDδ2 were predicted to be the target genes of sbi-miR159 and sbi-miR167, respectively. This study will help to decipher the roles of PLDs in sorghum growth and abiotic stress responses. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01200-9.

16.
Front Plant Sci ; 13: 893508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860529

RESUMO

Reduced glutathione (GSH) is a key antioxidant, which plays a crucial role in the detoxification of xenobiotics in plants. In the present study, glutathione could reduce chlorothalonil (CHT) residues in tomatoes by inducing the expression of the UDP-glycosyltransferase (UGT) gene. In plants, UGT is an important glycosylation catalyst, which can respond to stresses in time by activating plant hormones and defense compounds. Given the importance of plant growth and development, the genome-wipe analyses of Arabidopsis and soybean samples have been carried out, though not on the tomato, which is a vital vegetable crop. In this study, we identified 143 UGT genes in the tomato that were unevenly distributed on 12 chromosomes and divided into 16 subgroups and found that a variety of plant hormones and stress response cis-elements were discovered in the promoter region of the SlUGT genes, indicating that the UGT genes were involved in several aspects of the tomato stress response. Transcriptome analysis and results of qRT-PCR showed that most SlUGT genes could be induced by CHT, and the expression of these genes was regulated by glutathione. In addition, we found that SlUGT genes could participate in plant detoxification through interaction with transcription factors. These findings further clarify the potential function of the UGT gene family in the detoxification of exogenous substances in tomatoes and provide valuable information for the future study of functional genomics of tomatoes.

17.
Front Plant Sci ; 13: 865758, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651760

RESUMO

Melatonin (MT) is a key plant growth regulator. To investigate its effect at different growth stages on the yield of soybean under nitrogen deficiency, 100 µM MT was applied to soybean supplemented with zero nitrogen (0N), low nitrogen (LN), and control nitrogen (CK) levels, during the plant vegetative growth (V3) and filling (R5) stages. This study revealed that the application of MT mainly enhanced the nitrogen fixation of plants by increasing the root nodule number and provided more substrates for glutamine synthetase (GS) under 0N supply. However, under the LN supply, more ammonium was assimilated through the direct promotion of nitrate reductase (NR) activity by MT. MT enhanced the activity of ammonium-assimilation-related enzymes, such as GOGAT and GDH, and the expression of their coding genes, promoted the synthesis of chlorophyll and amino acids, and increased the photosynthetic capacity under nitrogen deficiency. Exogenous MT directly upregulated the expression of genes involved in the photosynthetic system and stimulated dry-matter accumulation. Thus, MT alleviated the inhibitory effect of nitrogen deficiency on soybean yield. This mitigation effect was better when MT was applied at the V3 stage, and the seed weight per plant increased by 16.69 and 12.20% at 0N and LN levels, respectively. The results of this study provide a new theoretical basis to apply MT in agriculture to improve the resilience of soybean plants to low nitrogen availability.

18.
Physiol Plant ; 174(4): e13731, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35717632

RESUMO

Saline-alkali (SA) stress induces excessive reactive oxygen species (ROS) accumulation in plant cells, resulting in oxidative damages of membranes, lipids, proteins, and nucleic acids. Melatonin has antioxidant protection effects in living organisms and thus has received a lot of attention. This study aimed to investigate the effect and regulating mechanism of melatonin treatment on soybean tolerance to SA stress. In this study, cultivars Heihe 49 (HH49, SA-tolerant) and Henong 95 (HN95, SA-sensitive) were pot-cultured in SA soil, then treated with MT (0-300 µM) at V1 stage. SA stress induced ROS accumulation and DNA damage in the seedling roots of both cultivars, causing G1/S arrest in HN95 and G2/M arrest in HH49. Melatonin treatment enhanced the activity of antioxidant enzymes in soybean seedling roots and reduced ROS accumulation. Additionally, melatonin treatment upregulated DNA damage repair genes, thus enhancing the reduction of DNA oxidative damage under SA stress. The effects of melatonin treatment were manifested as decreased RAPD polymorphism, 8-hydroxy-2'-deoxyguanine (8-OH-dG) level, and relative density of apurinic sites (AP-sites). Meanwhile, melatonin treatment partially alleviated the SA-induced G1/S arrest in HN95 and G2/M arrest in HH49, thus enhancing soybean seedling tolerance to SA stress.


Assuntos
Fabaceae , Melatonina , Álcalis/metabolismo , Álcalis/farmacologia , Antioxidantes/metabolismo , Apoptose , Dano ao DNA , Fabaceae/genética , Pontos de Checagem da Fase G2 do Ciclo Celular , Melatonina/farmacologia , Estresse Oxidativo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino , Plântula , Glycine max/metabolismo
19.
Carbohydr Polym ; 289: 119399, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483829

RESUMO

The oil/water separation of oil-in-seawater emulsion plays an important role in resource recovery and ecological environment restoration. In this work, oil-in-seawater Pickering emulsion in seawater with high salinity was stabilized by Fe3+ ions and amphiphilic alginate (AM-Alg), subsequently destabilized by UV light for efficient oil/water separation. Initially, AM-Alg exhibited high viscoelasticity at the oil-water interface, which was confirmed by Quartz crystal microbalance. The addition of Fe3+ caused the aggregation of AM-Alg at the oil-water interface and improved the formation of the three-dimensional interpenetrating network structure. When Fe3+ was at 0.1 mol/dm3, the oil-in-seawater Pickering emulsion had the best stability, and also the fastest demulsification speed under UV light. Moreover, the photochemical redox reaction rate and the conversion rate of Fe3+ were the highest. This photo demulsification technology is expected to become a new method of dealing with marine oil spills.


Assuntos
Alginatos , Poluição por Petróleo , Alginatos/química , Emulsões/química , Água do Mar
20.
J Agric Food Chem ; 70(12): 3596-3607, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35311267

RESUMO

The development of an eco-friendly nanopesticide formulation can alleviate the problems of low pesticide utilization and environmental pollution. However, the development of green nanopesticide carriers with ideal physical properties and specific bioavailability is still a challenging task at present. In this study, we propose a novel binary additive pesticide carrier system that is a functional polysaccharide-based polymer/surfactant (Alg-DA/APG) to improve the deposition and retention of pesticide droplets. The self-assembled micelle morphology of Alg-DA/APG and its effect on the apparent viscosity were investigated by transmission electron microscopy (TEM) and a Discovery HR-2 rotational rheometer. Surface tension was carried out to investigate the surface activity and critical micelle concentration (CMC) of Alg-DA/APG. The drop impacting experiments exhibited superior antisplash performance of Alg-DA/APG. Furthermore, a binary additive was used as the carrier material and loaded acetamiprid to prepare nanopesticide formulation Ace@Alg-DA/APG. The encapsulation efficiency (EE) and acetamiprid release behavior from Ace@Alg-DA/APG were also studied. Moreover, the dynamic contact angle (DCA) and retention experiment showed that the DCA and wetting radius at 600 s were, respectively, 6.8 ± 2.39° and 4.044 ± 0.0662 mm for the Ace@0.05 wt % Alg-DA/0.05 wt % APG on the banana foliage surface, and its retention rates on foliage surface were up to 74.80% after washing. The novel binary additive as a nanopesticide carrier has the potential to alleviate the problems of low pesticide utilization and environmental pollution in the future.


Assuntos
Alginatos , Micelas , Dopamina , Neonicotinoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...